CHURN PREDICTION IN TELECOMMUNICATIONS INDUSTRY. A STUDY BASED ON BAGGING CLASSIFIERS

Antonio Canale
Department of Economics and Statistics, University of Turin, Turin, Italy

Nicola Lunardon
Department of Statistical Sciences, University of Padua, Padua, Italy

Received: 28th November 2013 / Accepted: 11th March 2014

Abstract. Churn rate refers to the proportion of contractual customers who leave a supplier during a given time period. This phenomenon is very common in highly competitive markets such as telecommunications industry. In a statistical setting, churn can be considered as an outcome of some characteristics and past behaviour of customers. In this paper, churn prediction is performed considering a real dataset of an European telecommunications company. An appealing parallelised version of bagging classifiers is used leading to a substantial reduction of the classification error rates. The results are detailed discussed.

Keywords: Classification, Data mining, Computational Statistics.

1. INTRODUCTION

In telecommunications industry, customers are able to choose among multiple service providers and actively exercise their right of switching from one service provider to another. In this strongly competitive market, customers demand better services at less price, while service providers constantly focus on retention as their business goal. In this context it is important to manage the phenomenon of churn, i.e. the propensity of customers to cease doing business with a company in a given time period. Given the fact that the telecommunications industry experiences high churn rate and it costs more to recruit a new customer than to retain an existing one, customer retention is clearly more important than customer acquisition. In US wireless market, for example, the retention cost of a customer was estimated at 60$ while the one to acquire a new one at 400$ (Strouse, 2004). Many telecom-

1 Antonio Canale, email: antonio.canale@unito.it
Communications companies apply retention strategies to keep customers longer. With retention strategies in place, many companies start to include churn reduction as one of their business goals. A good prediction of the next leaving customer, leads marketing managers to conceive targeted retention strategies (Bolton et al., 2000; Ganesh et al., 2000; Shaffer and Zhang, 2002) Churn prediction is, therefore, both a marketing and statistical problem. Statistical models provide the predictions that suggest the marketing retention strategies. An interesting discussion, from the marketing viewpoint, about how to measure and understand the predictive accuracy of statistical and data mining models can be found in Neslin et al. (2006).

Conventional statistical methods (e.g. logistics regression, classification tree, neural network, generalised additive models) are quite successful in predicting customer churn. Nevertheless, these methods could be improved using some ensemble techniques such as bagging (Breiman, 1996).

In the next section a review of the statistical methods used in this framework is given, focusing especially on bagging. In Section 3 a real data application on telecommunications industry is performed and discussed from a statistical viewpoint. The paper ends with a final discussion and qualitative evaluation of the method.

2. REVIEW OF THE METHODS

In what follows we will refer to a dataset with a binary response vector variable y of dimension $n \times 1$, with $y_i = 1$ ($i = 1, \ldots, n$) if the ith customer has left, and to a $n \times p$ matrix X of quantitative and qualitative explanatory variables. We denote a classifier based on X as $C(X)$ being either 0 or 1.

2.1. SOME BASIC TECHNIQUES FOR CLASSIFICATION

All the statistical methods used and described are well known in the literature. For a detailed discussion from a data mining point of view consider the book by Hastie et al. (2009).

One of the easier way of constructing a classifier $C(X)$ is fitting a linear regression

$$y = X\beta + \epsilon$$

where β is a $p \times 1$ vector of unknown parameters and ϵ is an error term. Obtaining
a suitable estimate \(\hat{\beta} \) of the parameters one can compute \(\hat{y} = X \hat{\beta} \) and then classifies a unit as 1 if \(\hat{y} \) is greater than a given threshold \(t \).

Another simple and reliable solution consists in assuming that \(y_i \sim Be(\pi_i) \) and hence fitting a logistic model where

\[
\pi_i(\beta) = \frac{e^{x_i\beta}}{1 + e^{x_i\beta}} \quad i = 1, \ldots, n,
\]

with \(x_i \) the \(i \)th row of \(X \). The estimated \(\hat{\beta} \) are obtained with the usual Fisher’s scoring algorithm and a unit is classified as 1 if its estimated probability \(\pi_i(\hat{\beta}) \) is greater than a threshold.

Logistic and linear regressions are not proper instruments for classification. There are other methods properly studied for classification problems. One of these is the discriminant analysis. Suppose that \(X \) are realizations of random variables with different distribution functions in the two groups labelled by \(y \). Defined \(p_k(\cdot) \) as the density function of \(X \) in the group \(k \) \((k = 0, 1)\) and \(w_k \) as the weight of the \(k \)th group in the total population, using Bayes theorem the probability that a unit belongs to the group \(k \) is

\[
P(y_i = k|x_i) = \frac{w_k p_k(x_i)}{\sum_{k=0}^{1} w_k p_k(x_i)}.
\]

The comparison between the two classes can be studied with the log-ratio

\[
\log \frac{P(y_i = 1|x_i)}{P(y_i = 0|x_i)} = \log \frac{w_0}{w_1} + \log \frac{p_0(x_i)}{p_1(x_i)}
\]

and so a unit is classified in the group for which \(d(x_i) = \log w_k + \log p_k(x_i) \) is higher. For more details about classification in this classical setting one can refers to Mardia et al. (1979).

Classification trees, models performing binary recursive partitions, represent another approach to statistical classification. At each step of the procedure the method tries to divide the units in two groups as similar as possible with respect to the response variable \(y \). The partition is made choosing the cut point of the variable which minimise some objective function. More details can be founded in Breiman et al. (1984) and Hastie et al. (2009).

Another alternative is represented by additive models, which assume

\[
y = \alpha + \sum_{j=1}^{p} f_j(x_j)
\]
where \(x_j \) is now the \(j \)th column of \(X \) and \(f_j \) is a non parametric smoother such as loess or splines. A generalised additive model (GAM) can be derived from the equation above as

\[
g(E\{Y|x_1,\ldots,x_p\}) = \alpha + \sum_{j=1}^{p} f_j(x_j)
\]

using a similar argument of the generalised linear models. Here we can think to a logistic additive model using the logit link function in place of \(g(\cdot) \). Also with this approach the classifier needs the choice of a threshold to classify units. GAM are detailed analyzed in Hastie and Tibshirani (1999).

Another nonparametric classifier is obtained with the so called neural network. A neural network consists in a network of variables related by some function. Suppose that the the \(p \) explanatory variables are related to a hidden layer of \(q \) non observable variables \(z \), linked to the response variable \(y \). The neural network can be thought as a two step regression with

\[
z_j = f_0\left(\sum_{h=1}^{p} \alpha_{(h-1)q+j} x_h \right), \quad y = f_1\left(\sum_{k=1}^{q} \beta_k z_k \right).
\]

In our setting the function \(f_1 \) is chosen such that \(y \) varies between zero and one. Also here the classifier needs a threshold to classify the units.

2.2. BAGGING

Bagging is a method for generating multiple versions of a classifier to get an aggregated one. The multiple versions of the classifier are formed by making bootstrap replicates from the training sample. The name bagging comes from bootstrap aggregating. The idea is that, as in a parliament, each classifier acts as a voter for each unit. The final classification is given by the majority of the votes, given by the \(B \) classifiers. The new classifier will summarise all the information collected from the bootstrap replicates. The algorithm is described in Algorithm 1. For huge datasets and high number of bootstrap iterations \(B \), clearly the computational burden of a bagging classifier could be time demanding. Since bootstrap replicates are independent, the method can be easily implemented for parallel computation (see Grama, 2003, and references therein). A parallelised version on \(S \) slaves is given in Algorithm 2.

A critical issue is whether bagging will improve accuracy for the given classifier. An improvement will occur for unstable procedures where a small change
in the training set can result in large changes in $C(x)$. Particularly in classification trees and neural networks, bagging makes a substantial improvement, and depending on the application the reduction in validation set misclassification rates varies from 6% up to 77%. For both a theoretical and applicative point of view see Breiman (1996).

Algorithm 1 Bagging algorithm

```
for \( b = 1, \ldots, B \) do
    Extract the \( b \)th bootstrap sample from the data matrix;
    Fit the classifier \( C_b(x_i) \) to the \( b \)-th bootstrapped training sample;
end for

The bagging classifier is

\[
C_{\text{bagg}}(x_i) = \begin{cases} 
1 & \text{if } \frac{1}{B} \sum_{b=1}^{B} C_b(x_i) > t \\
0 & \text{otherwise}
\end{cases}
\]

```

Algorithm 2 Parallel version on \(S \) slaves of Algorithm 1

```
for each slave \( s = 1, \ldots, S \) do
    for \( b = 1, \ldots, B/S \) do
        Extract the \( b \)th bootstrap sample on \( s \)th slave from the data matrix;
        Fit the classifier \( C_{sb}(x_i) \) to the \( b \)th bootstrapped training sample;
    end for
end for

The bagging classifier is

\[
C_{\text{bagg}}(x_i) = \begin{cases} 
1 & \text{if } \frac{1}{B} \sum_{s=1}^{S} \sum_{b=1}^{B/S} C_{sb}(x_i) > t \\
0 & \text{otherwise}
\end{cases}
\]

```
3. REAL DATA ANALYSIS

This section illustrates how the bagging applies to a real dataset of an European telecommunications company available at azzalini.stat.unipd.it/Book-DM/data.html. The dataset consists of 30,619 customers for which are collected 99 variables. Among them some are static socio-demographic variables related to the customer or to his/her contractual plan and other are dynamic variables available each month, e.g. duration and number of phone calls, text messages, and so forth, for the 10 months before the target event (churn or not). A detailed list of the variables is shown in Table 1.

The dataset is constructed to mimic the operational behaviour of a company. At month m data for the 10 previous months will be available and the prediction for churn at month $m + 1$ would be performed. Note that, as commonly done in these data mining contexts, the monthly variables are treated as independent, and without considering their natural dynamic dependence.

The application context requires that the number of churned customers not predicted as such needs to be low, i.e. the false negative error rate must be minimised. Descriptive analysis reveals that the proportion of churned customers is 13.8% and this suggests that we should take into proper account the unbalance between the two classes of the response variable. Indeed, it may lead to heavy consequences in pursuing the classification task as, typically, classification rules are overwhelmed by the prevalent class (non churned customers), almost ignoring the rare class (churned customers). There is a rich literature dealing with this issue, so we defer the interested reader to the recent reviews by He and Garcia (2009) and Sun et al. (2009).

However, in our case the class imbalance is not severe and we have enough rare observations to construct a simple learning procedure just balancing the training set without having to resort to more sophisticated methods for managing the class imbalance. Indeed such methods are usually adopted in more extreme contexts. Our strategy is, hence to apply the bagging Algorithm 1 to a balanced training set.

The analysis have been carried out by using the statistical software R (R Core Team, 2013). We were able to overcome the time demanding nature of the strategy by implementing the parallelised bagging algorithm presented in Section 2.2 based on the package snowfall (Knaus, 2013).
We fitted to the data the following models: linear regression, logistic regression, linear discriminant analysis, logistic additive model, a classification tree and a neural network with 5 latent knots with threshold $t = \frac{1}{2}$, where needed. In particular, we split at random the available data into a (balanced) training set and validation set of size 3,140 and 1,000, respectively. The results of the analysis described below have been repeated with different training sets obtaining equivalent results (not reported).

Figure 1 shows the global error evaluated under each model in function of the number of bootstrap iterations. The global errors reported are evaluated with respect to the validation sample. These plots confirm what is stated in Breiman (1996). In our application the worst classifiers are heavily improved. For instance, the bagged version of the linear model reaches a global error of 18%, starting from an error of 31.5%. Clearly, the classifiers that already performed well are improved but not considerably, e.g. using the GAM model the global error starts at 19.4% and ends with “only” 14.4%.

The plots in Figure 2 show the smoothed version of the global error, the false positive and false negative rates. These plots are very interesting since they summarise all the information about the behaviour of the bagging classifier. In particular it can be seen that only few classifiers are of particular interest in churn prediction since the goal is the minimization of the false negative rate. These classifiers are the linear model and the neural net, as we can see from plot (a) and (e) of Figure 2; the remaining models produce bagging classifiers that have a false negative rate always bigger than the global error rate.

<table>
<thead>
<tr>
<th>Static variables</th>
<th>Monthly variables (available for 10 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer identification number</td>
<td>number of exit calls in peak time</td>
</tr>
<tr>
<td>Price contract (factor, 5 levels)</td>
<td>duration of exit calls in peak time</td>
</tr>
<tr>
<td>Method of payment (factor, 3 levels)</td>
<td>value of exit calls in peak time</td>
</tr>
<tr>
<td>Customer sex (factor, 3 levels)</td>
<td>number of exit calls in non-peak time</td>
</tr>
<tr>
<td>Age</td>
<td>duration of exit calls in non-peak time</td>
</tr>
<tr>
<td>Geographic zone of activation (factor, 4 levels)</td>
<td>value of exit calls in non-peak time</td>
</tr>
<tr>
<td>Sales channel (factor, 8 levels)</td>
<td>number of received calls</td>
</tr>
<tr>
<td>Presence of service 1 (binary)</td>
<td>duration of received calls</td>
</tr>
<tr>
<td>Presence of service 2 (binary)</td>
<td>number of SMS sent</td>
</tr>
</tbody>
</table>
Figure 1: Global error on the validation sample
Figure 2: Smoothed global error and its components
4. CONCLUSION

The results of all the methods are reported in Table 2. The global error is decreased using bagging procedures. The improvement on the overall error has not the same magnitude across the two components of the errors: false positives and false negatives. In fact, the false negatives are not really decreased while the false positives strongly turn down. Only the bagged neural network has an appreciable decrease of both the components of the classification error and in particular of the false negative rate. This is probably due to the fact that the validation sample is unbalance and so the main improvement interests especially the majority of the observations, i.e. those with $y = 0$.

From a marketing viewpoint, the improvement in the classification of the customer, according to their churn-propensity, allows several strategies. For example, it allows to better allocate marketing budget to the most likely leaving customer (possibly weighted for their monetary value) or to route incoming calls to the customer care more efficiently according to the estimated propensity of leaving. The predictive gain of the methods discussed here, has a direct effect on the efficiency of any possible marketing operations.

From an operative viewpoint, the parallel implementation of such a methods is appealing for practitioners that are stressed to produce reliable results in reasonable time.

To conclude, if companies introduce bagging versions of their commonly used classifiers, they might better identify the riskiest customer and thus improve their retention rates.

<table>
<thead>
<tr>
<th></th>
<th>Basic methods</th>
<th>Bagging methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Global error</td>
<td>False negative</td>
</tr>
<tr>
<td>linear model</td>
<td>33.97</td>
<td>9.02</td>
</tr>
<tr>
<td>logistic regression</td>
<td>34.46</td>
<td>9.08</td>
</tr>
<tr>
<td>discriminant analysis</td>
<td>33.97</td>
<td>9.02</td>
</tr>
<tr>
<td>classification tree</td>
<td>24.94</td>
<td>9.55</td>
</tr>
<tr>
<td>neural net</td>
<td>40.32</td>
<td>10.90</td>
</tr>
<tr>
<td>logistic GAM</td>
<td>31.75</td>
<td>8.49</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

The authors thank Bruno Scarpa for his suggestions to the early versions of the paper, the Guest Editor, Tonio Di Battista, and the referees for comments. This work has been carried out during the PhD studies of the authors at the Department of Statistics Sciences, University of Padua, Italy.

REFERENCES

