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Abstract. Testing for the equivalence of two treatments has received attention in 
recent literature. Solutions typically considered are based on likelihood methods and 
the intersection-union (IU) principle. The IU principle focuses on the investigation of 
the equivalence between two treatments; that is a true equivalence has to be identified 
with a probability converging to one. The goal of this paper is to propose a rank-
based permutation test through the Nonparametric Combination (NPC) of dependent 
tests, as an alternative to likelihood techniques. 
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1. INTRODUCTION 

The need to test for the equivalence of two treatments occurs very frequently 
in many areas of applied research. In general, let us suppose we have a new 
treatment A with (constant) effect A and a comparative treatment B with 
effect B and we wish to test whether these two treatments may be considered 
equivalent or not. Following current literature (see, e.g., Berger, 1982; Berger 
and Hsu,1996; D’Agostino et al., 2003; Hung and Wang, 2009; Julious, 2010; 
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Laster and Johnson, 2003; Liu et al., 2002; Metha et al., 1984; Wellek, 2010; 
Zhong et al., 2012), this kind of problem is approached by the intersection-
union (IU) principle. According to this principle the alternative hypothesis 
states that the difference between two treatments lies inside a given interval, 
namely the equivalence interval, of differences considered acceptable, 
whereas the null hypothesis states that the difference between the treatments 
lies outside that interval. Formally, the set of hypotheses can be written as: 

: [( )OR ( + )]

: ( < < + )                   
 (1)

where > 0 and > 0 are respectively the non-inferior and non-superior 
limits for the difference . Let us consider the following partial sub-
hypotheses: 

( ): ( )

( ): ( > )
 

 

( ): ( + )

( ): ( < + )
 

(2)

(3)

Note that the null hypothesis of the IU test is = ( ) ( ); that is, 
it is true if only one between the sub-null hypotheses ( ) and ( ) is true. 
Similarly, the alternative hypothesis = ( ) ( ) is true if both sub-
alternatives ( ) and ( ) are jointly true. 

Following the IU principle the focus is on the equivalence between two 
treatments. When the alternative hypothesis is true, we want to identify it with 
a probability converging to one for divergent sample sizes. It is worth noting 
that when = = 0 the test does not admit any solution. As a matter of fact 
in this case there are no points in the set of the possible values for ( , ) 
which satisfy the alternative (it is empty : ). It is possible to consider 

: [( < )OR ( > + )] instead of : [(

)OR ( + )] against : =  in order to reduce the effect of the 
drawback. But in this case when the involved variables are continuous, the 
probability of accepting  when it is true is bounded at  for whatever 
sample size, and thus it is not possible to provide a valid solution because the 
test statistic is not consistent.  
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In this paper we propose a rank-based permutation test for testing for 
equivalence in the framework of the IU approach. We use the Nonparametric 
Combination (NPC) methodology (Bertoluzzo et al., 2013, Pesarin and 
Salmaso, 2010) to cope with Multi-Aspect Testing (MAT). In MAT a given 
inferential problem is analysed by at most a countable set of concurrent 
different partial tests, each of which highlights a different aspect useful for the 
analysis (Brombin et al., 2011; Marozzi, 2004; Marozzi et al., 2006; Salmaso 
et al., 2005). The aim of the paper is to go beyond the difficulties of the 
likelihood based methods. 

Thus, in order to introduce our proposal, let us assume, without loss of 
generality, to have one endpoint variable X and a two-samples design. Let 
there be n1 the IID observations from  related to treatment A and n2 the IID 
observations from  related to treatment B. Let us also assume that the two 
variables  and  have the underling common variable X and that they 
differ only for a shift (which implies a constant treatment effect). Thus we 
define = +  and = +  and let = , … ,  and =

, … ,  be respectively the sample from A and the sample from B. 

 

2. IU PERMUTATION TEST 

In this section we present our approach to deal with the hypotheses testing (1). 
The idea at the base of the proposal is to test separately albeit simultaneously 
the sub-hypotheses (2) and (3). 

2.1 TESTING ( ) against ( ) 

For testing for ( ) against ( ) let us consider a test statistic based on 
the difference of means, denoted , computed after some apposite 
transformations of the data. Let us consider the following transformations of 
original observations: =  and = + . Then consider a rank 
transformation of the two samples  and . For the sake of simplicity let 
us continue to refer to the two transformed samples as  and . Note that 
we can see the hypotheses testing ( ): ( ) against ( ): ( >

) >  as a test for stochastic dominance. Thus a suitable test 

statistic is = , where = , = 1,2. Large values 

of  are significant in favour of the alternative ( ).  
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2.2 TESTING ( ) against ( ) 

For testing ( ) against ( ) let us consider a test statistic based on the 
difference of means, denoted , computed after some appropriate 
transformations of the data. As above, let us consider the following 
transformations of the original observations: =  and = . 
Then consider a rank transformation of the two samples  and . For the 
sake of simplicity let us continue to refer to the two transformed samples as 

 and . Note that we can see the hypotheses testing ( ): ( +

) against ( ): ( < + ) >  as a test for stochastic 
dominance. Thus a suitable test statistic is = , where =

1  , = 1,2. Large values of  are significant in favour of the 

alternative ( ). 

It is worth noting that the equivalence margins are expressed in the same 
unit of measurement of the observed variables. This fact represent an 
important point since in practice it is important to do not lose the precise 
meaning of the equivalence margins. Consider a clinical example in which we 
want to compare the effect of two treatments on the reduction of cholesterol. 
It is important for the sake of clarity that the interval be expressed in the same 
units as cholesterol levels are. By contrast, constructing an analogous 
nonparametric rank-based procedure following the optimal tests in the 
literature (such as that suggested by Lehman (1986)), requires that the 
equivalence interval be expressed in terms of ranks, which diminishes the 
substantive interpretability of the equivalence margins. Generally in the 
literature (see, e.g., Janssen and Wellek (2010)) the equivalence margins are 
indeed expressed in terms of standardized Wilcoxon-Mann-Whitney statistic, 
since transforming original data into ranks leads to a dependence between the 
tests which is difficult to model parametrically. With the Nonparametric 
Combination (NPC) methodology (see Pesarin and Salmaso (2010)) 
considered in this paper it is possible to manage the unknown dependence 
between the partial tests. Furthermore the rank transformation allows the 
execution of the test whatever be the underling distribution of the variables. 

 

3. AN ALGORITHM FOR IU RANK-BASED PERMUTATION TEST 

To better understand the proposed procedure, in this section we present more 
in detail the algorithm for the IU rank-based permutation test:  
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1. Let = ( , ) = ( , = 1, … , ); ,  be the set of data from 
the two groups and  and  the limits of the equivalence interval; 

2. Define the two data vectors = ( , ) = ( = , =

1, … , ; = , = 1, … , ) and = ( , ) =

( = , = 1, … , ; = , = 1, … , ); 
3. Compute the rank transformation of  and . For the sake of 

simplicity let us continue to refer to these transformed data with  
and ; 

4. Compute and save the two observed values of the two statistics: =

 and = ; 
5. Take a random permutation = , … ,  of unit labels =

(1, … , ); 

6. Define both permuted data sets = , = 1, … , ; ,  and 

= , = 1, … , ; ,  on the same permutation ; 

7. Compute and save the related permuted values of two statistics: =

 and = ; 
8. Independently repeat R times steps 5 to 7, obtaining results 

[( , ), = 1, … , ] which simulate the bivariate permutation 
distribution of two partial test  ( , ); 

9. Calculate two estimates of the two marginal p-value statistics =

/  and = /  and the -

combined observed value = ( , ), small values of which are 
evidence in favour of null hypothesis ; 

10. Transform the simulated bivariate distribution in step 8 into the 
bivariate empirical significance level function = [( , ), =

1, … , ] where = 0.5 + ( ) /( + 1), = , ; 

11. Define the -combined distribution [ = ( , ), = 1, … , ] 
that simulates the true bivariate permutation distribution of  where 
thedependence between ( , ) is nonparametrically, albeit 
implicitly, taken into consideration; 

12. The global NPC p-value statistic for testing equivalence is defined as 
= [ ] / ; 

13. If  then reject global  in favour of .  

It is worth noting that ( ) true implies ( ) false and vice versa, hence 
the two partial p-values are negatively dependent. Thus the nonparametric 
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combination function : [0,1] is such that small values of which are 
significant. Combination functions useful for IU tests have to satisfy the 
following properties: 

  is continuous and non-decreasing in each argument, i.e. <  

implies … , , … < … , , … ; 

  must attain its infimum if all arguments attain zero; 

 > 0 and larger than the minimum attainable value (Pesarin et al., 
2010) implies the conditional critical value > 0. 

Some examples of combination functions for the IU rank-based 
permutation tests are: = max ( , ), = + , = 1 (1

)(1 ). 

 

4. A SIMULATION STUDY 

In this section we present the results of a simulation study with the aim of 
demonstrating the general performance of the IU rank-based permutation test. 
In particular we consider two sample sizes (n=24, n=36), three different data 
generating distributions (Gaussian( (0,1)), Exponential (Exp(1)), and 
Laplace ( (0,1))) and different types of equivalence intervals (symmetric and 
asymmetric). The rejection probability of the permutation test (based on 2000 
permutations) at significance levels 0.05 and 0.10 is determined on the basis 
of 2000 Monte Carlo iterations, under the null hypothesis ( = , = ) 
and under the alternative ( = 0). The value of  was set to zero. The 
boundaries used in our simulations are those suggested in Wellek (2010). We 
considered  as combination function. 

Tables 1-6 show the results of the simulation study in the case of balanced 
samples, but tests for unbalanced case were also performed and yielded 
similar results. From simulation results we can appreciate that nominal 
significance alpha level is substantially achieved for all distributions 
considered, both for symmetrical and asymmetrical equivalence intervals. 
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Table 1. Rejection rate of the IU rank-based permutation test for equivalence at 
both boundaries of the hypotheses = , = and = , with sample 
size = = , . Gaussian distribution and equivalence range ( , ) =

( . , . ). 

 =  = .  = .  

 24 0.0505 0.1075 

 36 0.0495 0.0880 

 24 0.0495 0.1020 

 36 0.0470 0.1010 

0 24 0.6095 0.8005 

0 36 0.8690 0.9370 

 
 
 
 

Table 2.Rejection rate of the IU rank-based permutation test for equivalence at 
both boundaries of the hypotheses = , =  and = , with sample 
size = = , . Exponential distribution and equivalence range 
( , ) = ( . , . ). 

 =  = .  = .  

 24 0.0505 0.1100 

 36 0.0510 0.1050 

 24 0.0475 0.1000 

 36 0.0485 0.0990 

0 24 0.5710 0.7450 

0 36 0.8150 0.8990 
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Table 3. Rejection rate of the IU rank-based permutation test for equivalence at 
both boundaries of the hypotheses = , =  and = , with sample 
size = = , . Laplace distribution and equivalence range ( , ) =

( . , . ). 

 =  = .  = .  

 24 0.0395 0.0995 

 36 0.0495 0.0970 

 24 0.0450 0.0955 

 36 0.0490 0.0975 

0 24 0.5720 0.7600 

0 36 0.8295 0.9215 
 

 
 

Table 4. Rejection rate of the IU rank-based permutation test for equivalence at 
both boundaries of the hypotheses  = ,  = and  = , with sample 
size = = , . Gaussian distribution and equivalence range ( , ) =

( . , ). 

 =  = .  = .  

 24 0.0535 0.1035 

 36 0.0450 0.0985 

 24 0.0505 0.0900 

 36 0.0455 0.0860 

0 24 0.4670 0.6235 

0 36 0.6490 0.7855 
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5. AN EXAMPLE APPLICATION 

In this section we consider an example application of the IU rank-based 
permutation test. We want to further check the behavior and give some 
practical application guidelines of the test. The following example is not 

Table 5. Rejection rate of the IU rank-based permutation test for equivalence at 
both boundaries of the hypotheses  = ,  = and  = , with sample 
size  =  = , . Exponential distribution and equivalence range 
( , ) = ( . , . ). 

 =  = .  = .  

 24 0.0370 0.0995 

 36 0.0530 0.1095 

 24 0.0490 0.1020 

 36 0.0505 0.0965 

0 24 0.4485 0.6415 

0 36 0.6755 0.8005 

 
Table 6. Rejection rate of the IU rank-based permutation test for equivalence at 
both boundaries of the hypotheses  = ,  = and  = , with sample 
size  =  = , . Laplace distribution and equivalence range ( , ) =

( . , . ). 

 =  = .  = .  

 24 0.0520 0.1070 

 36 0.0455 0.0885 

 24 0.0485 0.0940 

 36 0.0540 0.1010 

0 24 0.4375 0.6075 

0 36 0.6375 0.7670 
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referred to a clinical application as is typical for the problem in matter. We 
want to show an example of equivalence testing problem in a social-political 
field, in order to take an idea of the different contexts in which the problem 
may occurs. The application is taken by the work of Caughey and Sekhon 
(2011), where it is of interest to test whether the congressional districts where 
the Democratic candidate barely won (and then the Republican barely lost) 
are equivalent to districts where the Democratic barely lost with respect to 
different pre-election covariates. We can easily see this example as an 
equivalence testing problem in which we want to assess if two districts can be 
considered equivalent on the base of a pseudo-treatment represented by a 
social variable of interest. We are interested in several variables and thus 
perform one test for each of them. The variables considered are: 1. the percent 
urban in the district (UrbanPct); 2. difference between the Democratic and 
Republican percentage of the presidential vote in the district, averaged over 
all elections in that decade (DifPVDec); 3. percent of the district population 
that worked for the government (GovWkPct); 4. percent black in the district 
(BlackPct); 5. percent foreign-born in the district (ForgnPct). The data consist 
of U.S. congressional elections decided by a margin less than 0.5%; see 
Caughey and Sekhon (2011) for details on the data. For each variable we 
tested equivalence in an interval of 5 where s is the standard deviation of 
the pooled data.  

Table 7 shows for each covariate the equivalence interval and the 
corresponding p-value resulting from the IU rank-based permutation test. 
Fixed the significance level = 0.05, we can see from the results that there is 
no evidence of equivalence between the two congressional districts regards 
the five covariates (all p-values > 0.05). 

Table 7. Results of the IU rank-based test applied to the example 
 

Covariates ( , ) p-value 

1. UrbanPct (-4.574, 4.574) 0.569 

2. DifPVDec (-0.031, 0.031) 0.307 

3. GovWkPct (-0.511, 0.511) 0.657 

4. BlackPct (-1.346, 1.346) 0.193 

5. ForgnPct (-0.949, 0.949) 0.245 
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6. CONCLUSIONS 

In this paper we presented a solution to testing equivalence and non-
inferiority under IU approach. Because the proposed procedure is rank-based, 
the IU test can be performed independently of the underlying distribution of 
the variables involved in the problem. By contrast the parametric procedures 
proposed by Lehman can be applied only to distributions belonging to the 
regular exponential family. Following the results in Pesarin and Salmaso 
(2010) concerning the NPC methodology we are able to deal with this 
intriguing problems going beyond the likelihood-based methods and facing 
the generally too complex dependence structure of the several partial test 
statistics in which such analysis is often broken down. With the NPC 
methodology we are also able to face with dependent partial tests with a 
dependency structure more complicated respect to that linear, and we do not 
need to know it. Another important issue our proposed method overcomes is 
proving an easy interpretation of the results. This is done by the fact that 
equivalence margins may be expressed in the same unit of measurement of 
the observed variables. 

Our proposed method is easy to be extended to one sample and C>2 
sample designs, to ordered categorical end-point variables, to repeated 
measures, to multidimensional settings, to situations with missing or censored 
data using the corresponding solution described in Pesarin and Salmaso 
(2010, 2011) on MAT and NPC and properly modifying the combination 
function. We usually describe the problem of testing for equivalence speaking 
of two treatments to compare. Typically we refer to the treatments as drugs. 
With the applicative example in Section 5 we show that the term treatment 
may refer to various things, and hence the problem of testing equivalence may 
occur in different fields, such as social and political science.  

Finally, we note that the problem of testing for equivalence of two 
treatments, can also be approached following a different principle, Roy’s 
union-intersection (UI) principle. Under this perspective the alternative is that 
the effect of a new treatment lies outside the equivalence interval, : [( <

) ( > + )] (i.e. when treatments are substantially non-
equivalent), and the null hypothesis is that the new effect lies inside the 
equivalence interval, : ( + ) (i.e. the two treatments 
do not differ substantially). Following this alternative approach the logical 
drawback explained in Section 1 for = = 0 does not occur, since it 
becomes the traditional two-sided testing : =  against : . A 
useful permutation solution following the UI principle is described in Pesarin 
et al. (2015). 
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