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Abstract. In recent years, Paired Comparisons of Statements (PCS), useful for collecting
and scaling preference measurements through a structured research questionnaire, has
gained a significant increase in popularity. The researcher defines a set of items and
assumes that there is an underlying subjective dimension, such as importance or preference.
Survey respondents are repetitively shown pairs of the possible items and the ultimate aim
is to measure the location or position of the items on that dimension. With growing
popularity there is a clear need to better understand the potentialities and limitations of
PCS. While some preliminary work has already been done, there are still several
unexplored areas. In this study we investigate to what extent the inclusion of a neutral point
in the scale impacts on the accuracy of results.

Dedication: This paper is dedicated to the memory of Prof. Roberto Corradetti, with deep
sadness at the loss, not only of a very distinguished statistician, but also of a very close
personal friend whose gentleness was matched only by his wisdom. His great dedication
and enthusiasm to research and innovation, and his even greater dedication to young
researchers and students will be deeply missed. Without Roberto’s knowledge and love of
statistics which he so generously shared, this work would not have been possible.
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1. INTRODUCTION

Companies constantly seek to enhance customer satisfaction and retention by
improving the overall quality of a product or service. To do so, managers must focus
on enhancing particular attributes of the product or service, those with the potential
greatest impact on customer satisfaction. However, identifying such key characte-
ristics can be challenging and a key step is determining the value customers attach
to the different features. The market researcher has several tools in the arsenal to
assess such value. Among these, the most popular metrics are traditional approaches
such as ratings, rankings, and constant sum. However, in the last decade trade-off
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approaches such as Maximum Difference Scaling (MDS) (Louviere and Woodworth,
1990; Finn and Louviere, 1992) and Paired Comparisons of Statements (PCS)
(David, 1988; Corradetti and Furlan, 2006) have become rather popular among
market researchers due to their advantages over the more traditional techniques. In
the literature, one can find plenty of theoretical and empirical studies dedicated to
these individual approaches and also some works involving a comparison of
different methodologies. For instance, Chrzan and Golovashkina (2006) conducted
a study to test six different types of importance metrics including traditional
approaches (i.e., ratings and constant sum), MDS, and three other less popular
methodologies; Jaeger et al., (2008) compared MDS to preference ratings; Madansky
(2010) considered PCS, MDS, and preference rankings. All these studies were
based on empirical results.

PCS is a discrete choice model that has its roots in the law of comparative
judgment presented by Thurstone (1927) and that has been extensively described
by David (1988) and more recently by Corradetti and Furlan (2006) and Furlan and
Turner (2011). To date, it is widely used to collect and scale preference measurements
through a structured research questionnaire. The researcher defines a set of items
(usually statements, messages, product features, service characteristics, options in
a decision, etc.) and assumes that there is an underlying subjective dimension, such
as extent of preference, degree of importance, degree of credibility, extent of appeal,
impact on prescription (for medical products), impact on purchasing, etc. In the
PCS approach, the ultimate aim is to measure the location or position of the set of
items on that dimension. These locations are estimated through an algorithm that
provides a set of utilities, with one utility score associated to each item.

In a PCS exercise, survey respondents are repetitively shown subsets of size
two of the possible items (each subset is also referred to as a PCS task). In its
simplest setup, referred to as short paired comparison of statements, the respondent
is asked to choose the preferred item (or the most credible, important, appealing,
etc.) from each subset. As the resulting data are quite poor from both a psychological
and a statistical points of view, the researcher often prefers to ask the respondent to
also indicate the intensity of the preference in what is called graded paired
comparison of statements model. In the graded version, the two items are usually
presented horizontally and a scale is presented underneath. In both the short and
graded version the researcher might decide to include a neutral (or indifference)
point for indicating ‘no preference’, useful when one does not want to force
respondents to make a choice towards one of the two items.

To some extent PCS is a valid and popular alternative to self-explicated
models. In this class of models, respondents would directly rate or rank the elements
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or allocate a number of points among them. With a rating approach, survey
respondents are presented the features individually and asked for their evaluations.
While this exercise is straightforward and requires little time and effort, it does not
explicitly capture priorities and results might suffer from lack of differentiation
(e.g., everything emerges as being important); in addition, the scale suffers from
scalar inequivalence issue (i.e., due to response style and cultural and personal
background differences there might be differences across respondents in the usage
of the scale - Louviere and Flynn, 2011; Sawtooth Software, 2007). All these
drawbacks might compromise the correct interpretation of the results and thus the
actionability. The ranking approach would not present these issues, however rank
evaluations imply an ordinal scale, while some researchers prefer to work with
interval or ratio scales because of their statistical properties. Similarly to the ranking
approach, the popular constant-sum allocation, an approach requiring respondents
to divide a limited amount of resources across a number of elements, captures
priorities quite well and the scale is not affected by the inequivalence issue.
However, with a large number of elements (e.g., ten or more), it becomes very difficult
for the respondent to effectively allocate scores among all of them, thus limiting the
applicability of this approach to only the smallest batteries of elements (Srinivasan
and Wyner, 2009).

In this context, PCS represents a valid approach to collect preference
measurements, as it is based on a trade-off approach rather than a self-explicated
one. It is a rather simple exercise, usually requiring an acceptable effort from
respondents, it is simple to execute, it can handle many elements, it provides results
that are empirically consistent with more complex ordering tasks, and produces
reasonable differentiation in the results which appear to be on a convenient ratio
scale. Probably, the most important property is that it measures all the items on a
common scale, thus addressing the scalar inequivalence problem characterizing the
way respondents use rating scales, arising mostly from differences in response
styles and cultural differences (Cohen and Neira, 2003; Steenkamp and Hofstede,
2002).

The simplest way to analyse PCS data is through a logit model (Corradetti and
Furlan, 2006). Let P be the set of items in the experimental design and T the set of
PCS tasks to be evaluated. Each task t ∈  T  is assessed through a preference score
assigned to one of the two presented items. The evaluation for task t is stored onto

t
y , an interval-scaled variable that can assume values in the range  [–s, +s], where
s is a positive integer set by the researcher. A negative value for yt indicates a
preference for the first/left item in the task while a positive one indicates a
preference for the second/right item. The indifference for either of the two items is
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expressed by 
t
y  = 0 and it can be made available or not to respondents. While in the

short paired comparison setup s = 1, in the graded paired comparison s usually
ranges from 2 to 4. The larger the absolute value of 

t
y , the stronger the preference

for the associated item. The PCS logit model is specified by a generalized linear
model with a logit link function: the stochastic component of the model is based on
the preference 

t
y  suitably recoded on a 0:1 scale, while the systematic component

is based on a design X matrix with P columns describing the PCS tasks:

E f logit
t

( ) , , ( )y X( ) = = =µµ ηη ββ µµ ηη (1)

The P-dimensional vector of parameters β s represents the items’ utilities and
they can be estimated by the maximum likelihood method. This approach is
particularly indicated for the graded PCS model, as it can model the strength of
competition within each set. The analysis is usually carried out for the full sample
or for major groups of respondents. However, given a large enough number of tasks
with respect to the number of items to be assessed, individual-level analysis can be
carried out. McCullagh and Nelder (1989) have provided exhaustive information
about the estimation algorithm and asymptotic properties of the parameter estimates.

Another popular approach to estimate individual-level PCS scores is hierar-
chical Bayes (HB) analysis. HB is particularly indicated to estimate PCS individual
utilities given only a few tasks assessed by respondents. This is accomplished by
borrowing information from population information describing the preferences of
other respondents. HB models estimate preference coefficients for a given respondent
based on his or her responses as well as on responses of similar respondents.
Consequently, more information is used in estimating individual utilities, thus it is
possible to estimate a larger number of parameters or the same number with greater
precision than other approaches allow. HB estimates tend to be robust to mistakes
or inappropriate answers due, for example, to tiredness. HB approach was first
adopted for conjoint analysis where, as for PCS analysis, usually there are many
heterogeneous units of analysis (the respondents) but for each unit only little
information is available (tasks evaluations).

While until a decade ago researchers could only run basic analysis on PCS
data allowing only aggregate-level logit estimation for studies investigating many
items, nowadays software packages offer comprehensive analytical capabilities,
and HB is probably the typical choice for PCS utility estimation as it allows
individual-level analysis.
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2. THE NEED FOR MORE INFORMATION

In recent years, PCS has gained a significant increase in popularity among market
researchers, due to its potentiality and design and analysis simplicity. Currently, it
is a widely adopted model in many different research areas including automotive,
FMCG, healthcare, transport economics, etc. The launch and diffusion of commercial
software for the analysis of PCS data has surely contributed to the recent success
of this approach, by increasing user accessibility and thus making it available to
non-statisticians. Sawtooth Software MaxDiff (Sawtooth Software, 2007) is probably
the most popular package to analyze PCS data (due to their cross-selling strategy
– most of their customers approach Sawtooth Software for their wide conjoint
offering), however the software seems to handle only the short model. A more
complete package is Demia R-sw Tradeoff (Demia Studio Associato, 2014) which
has been specifically designed to handle both the short and the graded PCS models.
Both packages support HB analysis for PCS data and they also handle MDS
analysis.

With growing popularity more and more researchers need to better understand
the potentialities and limitations of PCS, especially considering that PCS results are
often not just presented to the final user in their raw form, but they might be used
for additional statistical analyses, such as feeding a segmentation model (Dillon et
al., 1993).

To date, it is not very clear the role played by the different PCS exercise
elements with respect to the results accuracy. There are several elements to be
considered in a PCS study, and all play a potentially key role in the accuracy of PCS
results, although their role has not been properly quantified yet:
• number of items considered in the exercise;

• short model versus graded model;

• choice of the scale for the graded model;

• inclusion of a neutral/indifference point;

• number of times each item is presented to each respondent;

• number of PCS tasks in the questionnaire;

• type and number of design versions (blocks);

• number of respondents;

• preference homogeneity among respondents;

• preference homogeneity among items.

There is very little work done in this area, as most of the PCS literature focus
on alternative analysis algorithms, on comparisons against other popular approaches
such as ratings, rankings or MDS, or on practical applications of the approach.
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Corradetti and Furlan (2006) carried out an analysis of the impact of the number of
PCS tasks on the quality of the results. In their work, they considered 12 items
assessed through a graded PCS model with a 7-point scale inclusive of an
indifference point. They varied the number of tasks from 1 to 8 and they found out
that there is a linear loss of quality as the number of tasks decreases, and no evident
threshold could be identified. More recently, Furlan and Turner (2011) carried out
a more comprehensive study based on 15 items to assess the impact on results of
the type of PCS model (short, graded with 5 points, graded with 7 points; all models
were inclusive of an indifference point), of the number of tasks, and of the number
of design versions. They showed that (1) administering at least 5 design versions
considerably improves accuracy of results; (2) increasing the number of tasks has
an important effect on accuracy; (3) the type of the PCS model adopted for the
exercise has an effect on accuracy, with more complex evaluation frameworks
providing more accurate results.

With our work, we intended to explore to what extent the inclusion of the
neutral point impacts on the results as we could not find any relevant information
in the literature, in order to provide some actionable insight for researchers involved
in designing PCS exercises. In order to meet this objective, we decided to base our
analysis on 15 items as, based on our experience, most PCS projects require the
analysis of 12 to 18 items. We have also decided to always have 5 design versions
(blocks) to be assigned to the respondents sample because Furlan and Turner (2011)
showed that this approach improves accuracy of results and it is also likely to reduce
potential context bias and order effects which might have a negative effect on the
quality of responses. Finally, we chose to focus on the graded PCS model with a 5-
point scale as this represents a good compromise between simplicity (limitation of
respondents confusion and fatigue) and estimation accuracy (Furlan and Turner,
2011). We created a number of design combinations by varying the following three
elements:
• PCS model: indifference point available/not available (see Figure 1);

• number of tasks to be assessed by each respondent: 12, 15, 18;

• two possible error terms, 15 and 30, to represent respectively high and low
respondents’ accuracy (e.g., reflecting two levels of engagement).
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These three elements (PCS model, number of tasks, and respondents accuracy)
characterize a 2x3x2 full factorial design (12 combinations).

In addition to the 12, 15, or 18 tasks assessed by the respondents, we also
included some holdout tasks for validation purposes. Holdout tasks are scenarios
that are “held out” or set aside during the estimation procedure. After estimating the
model parameters, it is possible to determine how well the model predicts the
holdout observations. Usually, just a couple of holdout tasks are included in a PCS
exercise to keep it manageable and keep additional fatigue to a minimum. However,
as reported in the next section, we used simulated respondents, thus we could
include far more validation tasks (15 were presented to each respondent).

3. THE SIMULATION

In order to assess the impact of the PCS model, of the number of tasks, and of the
respondents’ accuracy, we could not use results from real surveys, as they would
inevitably be based on only one specific combination of these elements. Theoretically
speaking, we could have administered alternative designs to the same sample, but
this would not have been practical and we might also have risked introducing bias
due to the fact that the same respondents would have already been exposed to a

Figure 1: The PCS models explored in this paper.
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similar exercise a number of times. The only practical solution was simulating data,
which consisted of two steps:
(1) simulating respondents’ preferences (true utilities) for each statement;

(2) exposing these ‘computerized’ respondents to the alternative PCS design
versions to obtain PCS data. These respondents would ‘choose’ the most
preferred item and express the strength of the preference from each pair
according to their preferences simulated at (1).

In order to simulate the respondents’ preferences, we looked at a number of
previous PCS studies analysed with a HB model in order to assess what could be
a reasonable distribution for each item. We noticed that the average of PCS
preferences across the sample tends to be between 10 and 90 for most items
(considering a scale 0:100). The distribution of these preference scores is asymmetric
except, as one would expect, for items with an average around 50, with the
asymmetry being the largest for the items whose average is closer to 10 (positive
skewness) or closer to 90 (negative skewness). We fitted a beta distribution to each
PCS item in every available project to assess potential beta coefficients for the PCS
preference scores.

Based on this analysis of past studies, we generated preference scores for 15
items and 200 simulated respondents through a two-stage process. We chose this
specific sample size as, based on our PCS projects review, this appeared the most
common one, a good compromise between robustness and affordability. First, we
randomly assigned an average preference score to each item between 10 and 90.
Second, we generated scores for every item for each respondent by the addition of
a beta distributed random variable with appropriate coefficients. The resulting
generated scores were asymmetric with their distributions mirroring those seen in
previous PCS studies.

As a second step, we had to give the various PCS design (i.e., 12 to 18 tasks)
as well as the 15 holdout tasks to this set of ‘computerized’ respondents. For each
task and respondent, the preference scores associated to the two items within a task
were identified and thus transformed into an expressed choice based on an
algorithm assumed to closely mirror the choice behaviour in the real world. This
algorithm is based on the difference in preference score between the two items in
the task and its structure depends on both the model considered and on the error term
associated to the respondent, as shown in Figure 2. In case of non-availability of the
indifference point, if the difference of the preference scores associated to the two
items within the task is smaller than the error term, the two items are equally likely
to be selected (slightly preferred left item or slightly preferred right item). The
resulting choice data have the correct format to be analyzed by the package R-sw
Tradeoff (Demia Studio Associato, 2014) without further recoding.
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It is worth noting that no matter how well constructed the ‘computerized’
respondents are, a simulation is not able to fully mirror the choice behaviour in the
real world. In fact, in any trade-off exercise there is a certain amount of response
error that might lead, for instance, to an item with higher utility not being preferred
to an item with lower utility. However, although this limitation exists, we are
confident that the simulation mirrors sufficiently well the actual choice behaviour
in terms of order, context, and layout effects. These can be largely reduced and
sometimes completely eliminated (e.g., when there are no prohibited combinations)
with an accurate experimental design with an excellent one-way, two-way, positional,
and within-block balance. One element, however, that could have an effect on the
realism of the simulation is the number of tasks seen by each respondent and thus
the length of the exercise. This is an effect that has not been well studied in relation
to PCS projects and there appears to be the opportunity for further research.
However, there is some evidence available for other trade-off models (e.g., conjoint
analysis and discrete choice modelling) to suggest that this effect is hardly
controllable, as it depends on many elements such as the target respondents, the
complexity of the task, the respondent’s level of engagement, etc. For this reason,
we have decided not to introduce any adjustment coefficients in the simulation.

The design creation, the preference scores generation, the subsequent
identification of the preference scores associated to the various items, the choice of
the most preferred item, as well as the analyses described in the next section, were
performed 100 times for each design combination in order to obtain accurate
estimates for the various outcomes of our analysis. Figure 3 illustrates the key steps
of the process.

Figure 2: Rationale to convert preference scores into respondents choices (error term = 15)
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Figure 3: Key steps of the simulation process
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4. THE ANALYSIS AND DATA VALIDATION

Once the above simulated datasets had been obtained, we could proceed with the
analysis. We decided to analyse the data using HB modelling as this is the typical
choice to obtain individual-level results; this approach works well even when there
are many items to be estimated with respect to the number of tasks assessed by each
respondent.

Only the data associated to the PCS designs have been considered for the
analysis, and not also the holdout tasks, which were considered later on for
validation purposes only. For the HB analysis, we chose the estimate.PCS.HB
function available in the package R-sw Tradeoff (Demia Studio Associato, 2014).
This choice was dictated by the fact that this is the only commercial software that
we are aware of that has been specifically designed to handle the graded PCS model.
This is a very flexible and convenient package; it has been possible to prepare an
appropriate script to analyse all simulated datasets without repetitive and tedious
manual intervention from us. For each alternative design and each respondents set
we obtained a full set of PCS individual scores or utilities (a score for each item and
respondent).

As a final but important step, we had to choose and adopt an appropriate
approach to validate the quality of these sets of utilities against the original
simulated preference scores. Thanks to our simulation framework, we had the
assessment of 15 holdout tasks for each respondent, thus we could use a hit rate
approach. We can say there is a hit when the PCS utility associated to the preferred
item in the holdout task is larger than the PCS utility associated to the other item
appearing on the task. Therefore, we defined as hit rate the percent of times that the
HB model ‘guesses’ the preferred item. This analysis is based on all sample
respondents and all holdout tasks they have been exposed to for which a preference
was given either to the left or to the right item. The hit rate index for each design
combination, averaged over the 100 iterations, is presented in Figure 4.

It is important to mention that, for the sake of an appropriate interpretation of
results, the hit rate score for the model under investigation (i.e., the one based on
the PCS individual scores) should be compared against the hit rate score of a random
model (i.e., a model based on absolute randomness of choices which is obtained by
the reciprocal of the number of items presented in the various tasks). If the hit rate
for the model under investigation is significantly higher than the one for a random
model (in our case 1/2=50%), then it is possible to say that the model is, to some
extent, satisfactory. The hit rate score of a random model represents a lower limit
and is used to put the hit rate score into context.
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From Figure 4 it is evident that the three design elements we considered in our
simulation project all have a significant impact on the results. The magnitude of the
impact of the number of PCS tasks was expected as this is usually the main element,
along with the number of items to be assessed, considered by the statistician when
designing a PCS exercise. This impact seems to be almost linear and this is consistent
with previous findings (Corradetti and Furlan, 2006; Furlan and Turner, 2011).

The inclusion of the indifference point has a positive impact on the accuracy
of results and this benefit is similar for any number of tasks.

The impact of respondents’ accuracy is somehow in line with expectations,
although this seems to be much lower when the indifference point is included
(Figure 4). Including this point seems to mitigate the negative effects of a larger
respondents’ inaccuracy.

In addition, it is worth noting that including the indifference point might have
a significant and positive impact on the accuracy in an indirect way. For instance,
as the indifference point provides respondents with an escape route from having to
think, its exclusion is likely to increase respondents’ efforts/fatigue, with consequent
potential lower quality (larger error term) and a longer survey time. Therefore, we
conclude that it seems to be beneficial to have the indifference point in a PCS
exercise, especially when we anticipate low respondents’ accuracy (e.g., large
number of PCS tasks, low engagement, long/complex labels for the PCS elements).
The positive effect of the inclusion of the indifference point is extremely valuable
for researchers, as it is easy to accomplish, economical, and practical.

Figure 4: Effects of each design combination based on hit rates
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5. CONCLUSIONS

With this study we explored how some key elements in a PCS design, in particular
the inclusion of the indifference point, impact on the accuracy of results. Our
findings are consistent with, and complement well, previous research conducted in
this area. Among the various potential elements we could focus on, we chose the
PCS model (indifference point available/not available), the number of tasks, and
respondents’ accuracy.

The main result is that our study indicates the inclusion of the indifference
point has a positive direct impact on the accuracy of results, especially when we
anticipate low respondents’ accuracy (e.g., large number of PCS tasks, low
engagement, long/complex labels for the PCS elements). Moreover, the inclusion
of the indifference point might have a significant and positive impact on the
accuracy also in an indirect way. For instance, as the indifference point provides
respondents with an escape route from having to think, its exclusion is likely to
increase respondents’ efforts/fatigue, with consequent potential lower quality
(larger error term) and a longer survey time. Therefore, we conclude that it seems
to be beneficial to have the indifference point in a PCS exercise, and this is
particularly true when respondents need to be exposed to a large number of PCS
scenarios, when the exercise is otherwise potentially challenging or time consuming
(e.g., long/complex labels for the PCS elements), or when the questionnaire is very
long (there are usually other sections before the PCS exercise).

We also showed that increasing the number of tasks has an important effect
on accuracy, well in line with previous research, thus the researcher should include
as many tasks as practical in the PCS exercise, but not so many to introduce elements
of fatigue and confusion among respondents. In fact, fatigue and confusion have a
detrimental effect on accuracy, as our study shows (by varying the error term).

It is important to highlight that the results obtained in this study are valid for
a project with 15 items and 12 to 18 tasks included in the questionnaire, and they
might be slightly different with a different project setup. Moreover, our findings are
valid only for the simulation model we adopted. Results could have been different
if another model were appropriate, for instance if average preference scores differed
by larger or smaller amounts, their variability was different, or if they followed a
lognormal, a gamma, or some other distribution. Further research is needed to
assess to what extent the results are affected by the simulation model.

Further research is also required to assess different project setups and to
investigate elements that have not been considered in this or previous studies, such
as preference homogeneity among respondents and among items. Some additional
research is also required to assess the impact of PCS elements in relation to various
respondent types (e.g., busy professionals, young or old respondents) and in
different fields (FMCG, B2B, durables, etc).
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