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Abstract. Small area estimation (SAE) plays an important role in survey sampling due to
growing demands for reliable small area statistics from both public and private sectors.
This paper reviews some of the current techniques of small area estimation combined
with spatial models available in the literature. Illustrative examples or applications are
likewise presented in the context of official statistics where data sources, particularly
surveys and censuses or surveys and administrative sources, have been combined using
statistical models based on small area and domain estimation.
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1. INTRODUCTION

Over the last decade there has been growing demand from both public and private
sectors for producing estimates of population characteristics at disaggregated ge-
ographical levels, often referred to as small areas or small domains (Rao, 2003a).

Small area estimation (SAE) models are applied in many area of statistical
research: environmental statistics, economics, demography, epidemiology, and
so on. Every study shows that to use spatially referred data produces estimates
more reliable than that obtained by traditional methods. This paper reviews some
of the current techniques of small area estimation combined with spatial models
available in the literature. The first studies that connect spatial relations and SAE
methods are Cressie (1991) and Pfeffermann (2002). In the following years, many
papers have been published showing how the use of geographical information im-
proves the estimation of the small area parameter, both increasing efficiency and
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diminishing bias. We refer, among others, to Saei and Chambers (2005), Petrucci
et al. (2005), Petrucci and Salvati (2006), Singh et al. (2005) and Pratesi and
Salvati (2008). Area level models and unit level models are described with il-
lustrative examples or applications in the context of official statistics. This limits
the extension of our review to the models that had - as far as we know - a valu-
able application in the context of official statistics when producing estimates at
subregional level.

The use of spatial information is likely to be most productive when the avail-
able model covariates are weak. In this case, spatial information can substantially
strengthen prediction for non-sampled areas - provided there is significant spatial
correlation. In particular, here we review the linear mixed models that include
dependent random area effects to account for between area variation beyond that
explained by auxiliary variables (see Section 2) and the geo-additive linear models
that includes a non-linear spatial trend in the mean structure of the model (Sec-
tion 3). These ideas extend to unit level random effect and M-quantile models,
see Opsomer et al. (2008) and Salvati et al. (2012). Particularly here we illustrate
an application of M-quantile approach to SAE when the non stationarity in the
data is captured via geographically weighted regression (Section 4). Our final re-
marks and the lessons learned from the applications of the models are described
in Section 5.

2. AREA LEVEL LINEAR MIXED MODELS

The most popular class of models for small area estimation is linear mixed models
that include independent random area effects to account for between area varia-
tion beyond that explained by auxiliary variables (Fay and Herriot (1979); Battese
et al. (1988)). Following mixed models methodology (Jiang and Lahiri, 2006),
a best linear unbiased predictor (BLUP) is used to obtain the small area param-
eter of interest (usually the mean or total of the study variable). If, as usual, the
variance components are unknown, the correspondent empirical best linear un-
biased predictor (EBLUP) is used instead (see Rao (2003b), Chapters 6-7) for a
detailed description). Under the classic SAE model we make the assumption of
independence of the area-specific random effects. If the small domain of study
are geographical areas, this assumption means that we don’t take into account any
possible spatial structure of the data.

Remembering again the first law of geography however, it is reasonable to
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suppose that close areas are more likely to have similar values of the target pa-
rameter than areas which are far from each other, and that an adequate use of
geographic information and geographical modeling can help in producing more
accurate estimates for small area parameters Petrucci et al. (2005)). In addition,
Pratesi and Salvati (2008) noted that geographical small area boundaries are gen-
erally defined according to administrative criteria without considering the eventual
spatial interaction of the variable of interest. From all these considerations, it is
reasonable to assume that the random effects between the neighboring areas (de-
fined, for example, by a contiguity criterion) are correlated and that the correlation
decays to zero as distance increases.

Consider a finite population partitioned into D small areas. The basic Fay
and Herriot (FH) model relates linearly the quantity of inferential interest for d-th
small area, θd to a vector of p area level auxiliary covariates xd =(xd1,xd2, . . . ,xd p),
and includes a random effect vd associated to the area; that is,

θd = xdβ+ vd , d = 1, . . . ,D. (1)

Here β is the p×1 vector of regression parameters and the random effects {vd ; d =
1, . . . ,D} are independent and identically distributed, each with mean 0 and vari-
ance σ2

v . Model (1) is called linking model since all small areas are linked by the
common β. Moreover, the FH model assumes that a design-unbiased direct esti-
mator yd of θd is available for each small area d = 1, . . . ,D, and that these direct
estimators can be expressed as

yd = θd + ed , d = 1, . . . ,D, (2)

where {ed ; d = 1, . . . ,D} are independent sampling errors, independent of the ran-
dom effects vd , and where ed has mean 0 and variance ψd assumed to be known,
d = 1, . . . ,D. See Ghosh and Rao (1994). Model (2) is called sampling model.
Combining both the linking model (1) and the sampling model (2) we obtain the
linear mixed model

yd = xdβ+ vd + ed , d = 1, . . . ,D. (3)

Let us assume vectors y= (y1, . . . ,yD)′, v= (v1, . . . ,vD)′ and e= (e1, . . . ,eD)′, and
matrices X = (x′1, . . . ,x′D)′ and Ψ = diag(ψ1, . . . ,ψD). Then the model in matrix
notation is

y = Xβ+v+ e. (4)
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Model (4) can be extended to allow for spatially correlated area effects as
follows. Let v be the result of a Simultaneously Autoregressive (SAR) process
with unknown autoregression parameter ρ and proximity matrix W (see Anselin
(1988b) and Cressie (1993), i.e.,

v = ρWv+u. (5)

We assume that the matrix (ID −ρW) is non-singular. Then v can be expressed
as

v = (ID −ρW)−1u. (6)

Here, u= (u1, . . . ,uD)′ is a vector with mean 0 and covariance matrix σ2
u ID, where

ID denotes the D×D identity matrix and σ2
u is an unknown parameter. We con-

sider that the proximity matrix W is defined in row standardized form; that is, W
is row stochastic. Then, ρ ∈ (−1,1) is called spatial autocorrelation parameter
(Banerjee et al., 2004). Hereafter, the vector of variance components will be de-
noted ω = (ω1,ω2)′ = (σ2

u ,ρ)′. Equation (6) implies that v has mean vector 0 and
covariance matrix equal to

G(ω) = σ2
u [(ID −ρW)′(ID −ρW)]−1. (7)

Since e is independent of v, the covariance matrix of y is equal to

V(ω) = G(ω)+Ψ.

Combining (4) and (6) the model is

y = Xβ+(ID −ρW)−1u+ e (8)

Under model (8), the Spatial BLUP of the quantity of interest θd = xdβ+ vd is

θ̃d(ω) = xdβ̃(ω)+b′
dG(ω)V−1(ω)[y−Xβ̃(ω)], (9)

where β̃(ω) = [X′V−1(ω)X]−1X′V−1(ω)y is the generalised least squares esti-
mator of the regression parameter β and b′

d is the 1×D vector (0, . . . ,0,1,0, . . . ,0)
with 1 in the d-th position. The Spatial BLUP θ̃d(ω) depends on the unknown
vector of variance components ω = (σ2

u ,ρ)′. The two stage estimator θ̃d(ω̂) ob-
tained by replacing ω in expression (9) by a consistent estimator ω̂ = (σ̂2

u , ρ̂)′ is
called Spatial EBLUP (see Singh et al. (2005), Petrucci and Salvati (2006)).
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The classical hypothesis of independence of the random effects is overcome
by considering correlated random area effects between neighbouring areas mod-
eled through a SAR process with spatial autocorrelation coefficient and proximity
matrix W (Anselin, 1988b). The corresponding estimators of the small area pa-
rameters are usually known as Spatial EBLUP (SEBLUP). In addition, the use
of SAE models with spatially correlated random area effects gives a possible
solution to the problem of estimating the parameter of interest for the areas in
which no sample observations are available. With the traditional SAE model, the
only prevision available for non-sampled areas is given by the "fixed term" of the
mixed model, since the estimation of the random effect is not possible. On the
contrary, the hypothesis of correlated random effects allows the estimation of the
area-specific effects for all areas, both sampled and non-sampled. The addition
of these estimated random effects to the fixed component of the model gives the
prediction of the small area parameter in every area.

2.1 AN EXAMPLE IN OFFICIAL STATISTICS: THE AVERAGE PRODUCTION
OF OLIVES PER FARM IN 53 ZONES OF THE TUSCANY REGION (ITALY)

The data are from the Farm Structure Survey (FSS, ISTAT 2003). The survey is
carried out once every two years. The sample is selected by means of a stratified
one-stage design with self-representation of larger farms (agricultural holdings).
The sample size is 55,030 farms for Italy and 2,504 for Tuscany. The survey is
carried out in order to produce accurate estimates of agricultural production at
national and regional levels. In this case study, the target parameter is the farm
production of olives in quintals at a subregional level in Tuscany. Tuscany is
divided into 53 Agricultural Zones (AZs). They are defined on a geographical
basis and are very useful small areas in economic studies. They are determined
following the administrative boundaries of the 287 Municipalities of Tuscany. All
the AZs are represented in the regional FSS sample. The area level sampling
variances have been obtained by estimating the sampling variances of the small
area direct estimators.

The exploratory analysis firstly tested the presence of the spatial dependence
in the data. Essential to this are the definitions of the spatial location of the AZs
and the spatial interaction matrix (W). The centroid of each AZ is considered
to be the spatial reference for all the units (in the case of farms for AZs) resid-
ing in the same small area and it is defined to be the location of the small area.
The Atlas of Coverage of the Tuscany Region maintained by the Geographical
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Information System of the Regione Toscana provided all the information on coor-
dinates, extensions and positions of the small areas of interest (UTM system). The
Population Census and Agricultural Census databases provided all the auxiliary
information related to the average farm production of olives (quintals per farm)
and their covariates at small area level.

The spatial interaction matrix (W) for each location specifies which other
locations in the system affect the value of the farm production of olives at that
location. The elements of W are nonstochastic and exogenous to the SAE model.
In our definition the elements of W take nonzero values (they are equal to 1) only
for those pairs of AZs, that are contiguous to each other (first-order contiguity).
This scheme is common to many real-life situations in the fields of geology, agri-
culture, and environmental science as well as in certain areas of health studies
and epidemiology. Spatial autocorrelation in the target variables and in the aux-
iliary variables has been checked by means of the two best-known test statistics
for spatial autocorrelation: Moran’s I and Geary’s C (Anselin, 1988a). The best
explanatory variable for the target variable is the agricultural surface utilized for
the production of olives (measured in hectares). For the covariate, the Moran’s
I statistics are significant at the 1% level, indicating that similar values are more
spatially clustered than what might be purely by chance. This is consistent with
the estimated values for Geary’s C. Spatial dependence in the target variable is
weaker, but still statistically significant.

The per farm production of olives was modelled by the Spatial Fay-Herriot
model and by the more traditional Fay-Herriot model. For the spatial model the
value of the estimated spatial autoregressive coefficient ρ̂ was 0.686 (s.e. = 0.319)
and the value of the estimated variance component σ̂2

u was 0.792 (s.e. = 0.604)
when we used the REML procedure. The accuracy of the estimates is measured
by the coefficients of variation. The mean of the point estimates suggests a pro-
duction of olives of about six quintals per farm with a slightly lower median value
obtained in both the SEBLUP and EBLUP procedures. This is not a surprise as
the distribution of the target variable in the population is skewed and concentrated
on small production units. The average accuracy of the estimates is not apprecia-
ble: the CV is about 30% of the estimates. This can be mainly due to the high
dispersion of the sample size in the areas and to the skewness of the distribution
of the target variable. EBLUP on average is slightly more variable, even though
its performance is in line with that of SEBLUP. The performances of EBLUP and
SEBLUP are similar even though the spatial relationship appears to be of medium
strength and significant. Indeed, there is not relevant difference between EBLUP
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and SEBLUP estimates and also in their accuracy. This could be due to the low
and nonsignificant value of the estimated variance component and the wide range
of sampling variances.
This application discusses the spatial effects in data used for SAE on the perfor-
mance of the BLUP obtained under the area level Fay-Herriot model. The perfor-
mance of the BLUP was compared with that of the SBLUP via a simulation study
in which the population was generated according to a spatial Fay-Herriot model
and a wide range of values, ranging from -0.75 to 0.75, for the spatial correlation
were used. The main finding is that the SBLUP outperforms the BLUP in terms
of efficiency and relative bias in cases of both positive and negative spatial cor-
relation, and this result does not depend on the size of the sampling variances in
different area groups. In other words, the SBLUP is appropriate when spatial de-
pendency is present in the data used for SAE. Obviously, in real-life situations the
parameters of a spatial Fay-Herriot model are not known and must be estimated
from survey data. In such a case, attention is devoted to Spatial Empirical BLUP
(SEBLUP) and its mean squared errors.

More details of the results of this application can be found in Pratesi and
Salvati (2009).

3. GEOADDITTIVE SAE MODELS

Until now, we have considered the spatial structure of the data at the area
level: the only information used to build the proximity matrix of the SAR pro-
cess is about the small area locations. However, if the spatial location is available
for every unit, we can try to use it directly as a covariate of the SAE model. The
application of bivariate smoothing methods, like kriging, produces a surface inter-
polation of the variable of interest. In particular, the geoadditive model analyses
the spatial distribution of the study variable while accounting for possible covari-
ate effects through a linear mixed model representation. Exploiting the common
linear mixed model framework of both small area estimation models and geoad-
ditive models, we can define the geoadditive SAE model. This model will have
two random effect components: the area-specific effects and the spatial effects.
The geoadditive SAE model belongs to a more general class of models intro-
duced by Opsomer et al. (2008), called non-parametric SAE model, where the
non-parametric component is a penalised spline model that accounts for a generic
non-linear covariate.
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Suppose that there are T small areas for which we want to estimate a quantity
of interest and let yit denote the value of the response variable for the ith unit,
i = 1, ...,n, in small area t, t = 1, ...,T . Let xit be a vector of p linear covariates
associated with the same unit, then the classic SAE model is given by

yit = xitβ+ut + εit , εit ∼ N(0,σ2
ε ), ut ∼ N(0,σ2

u ), (10)

where β is a vector of p unknown coefficients, ut is the random area effect as-
sociated with small area t and εit is the individual level random error. The two
error terms are assumed to be mutually independent, across individuals as well as
across areas.

If we define the matrix D = [dit ] with

dit =

{
1 if observation i is in small area t,
0 otherwise

(11)

and y = [yit ], X =
[
xT

it
]
, u = [ut ] and ε= [εit ], then the matrix notation of (10) is

y = Xβ+Du+ε, (12)

with

E
[

u
ε

]
=

[
0
0

]
, Cov

[
u
ε

]
=

[
σ2

u IT 0
0 σ2

ε In

]
.

The covariance matrix of y is

Var(y)≡ V = σ2
u DDT +σ2

ε In

and the BLUPs of the model coefficients are

β =
(
XT V−1X

)−1 XT V−1y,
u = σ2

u DT V−1(y−Xβ).

If the variance components σ2
u and σ2

ε are unknown, they are estimated by REML
or ML methods and the model coefficients are obtained with the EBLUPs.

The formulation (12) is a linear mixed model, analogous to the geoadditive
model (Kammann and Wand (2003)), thus it is straightforward to compose the
geoadditive SAE model. Consider again the response yit and the vector of p linear
covariates xit , and suppose that both are measured at a spatial location sit , s ∈
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ℜ2. The geoadditive SAE model2 for such data is a linear mixed model with two
random effects components:

y = Xβ+Zγ+Du+ε, (13)

with

E




γ
u
ε



=




0
0
0



 , Cov




γ
u
ε



=




σ2

γ IK 0 0
0 σ2

u IT 0
0 0 σ2

ε In



 .

Now X =
[
xT

it ,sT
it
]

1≤i≤n has p+2 columns, β is a vector of p+2 unknown coeffi-
cients, u are the random small area effects, γ are the thin plate spline coefficients
(seen as random effects) and ε are the individual level random errors. Matrix D is
still defined by (11) and Z is the matrix of the thin plate spline basis functions

Z = [C (si −κk)]1≤i≤n,1≤k≤K [C (κh −κk)]
−1/2
1≤h,k≤K ,

with K knots κk and C(r) = ‖r‖2 log‖r‖.

Again, the unknown variance components are estimated via REML or ML
estimators and are indicated with σ̂2

γ , σ̂2
u and σ̂2

ε . The estimated covariance matrix
of y is

V̂ = σ̂2
γ ZZT + σ̂2

u DDT + σ̂2
ε In (14)

and the EBLUP estimators of the model coefficients are

β̂ =
(
XT V̂−1X

)−1 XT V̂−1y, (15)

γ̂ = σ̂2
γ ZT V̂−1(y−Xβ̂), (16)

û = σ̂2
u DT V̂−1(y−Xβ̂). (17)

For a given small area t, we are interested in predicting the mean value of y

ȳt = xtβ+ ztγ+ut

where xt and zt are the true means over the small area t and are assumed to be
known. The EBLUP for the quantity of interest is

ˆ̄yt = xtβ̂+ zt γ̂+ et û (18)

where et is a vector with 1 in the t-th position and zeros elsewhere.

2 The same model formulation is in Opsomer et al. (2008), where is presented a model, called
by the authors non-parametric SAE model, that accounts for a generic non-linear covariate.
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3.1 AN EXAMPLE IN OFFICIAL STATISTICS: HOUSEHOLD PER-CAPITA
CONSUMPTION EXPENDITURE IN ALBANIA

An application of a geoadditive model for official statistics is shown in (Bocci,
2009). In particular a geoadditive small area estimation model is applied in the
field of poverty mapping at small area level in order to estimate the district level
mean of the household log per-capita consumption expenditure for the Republic
of Albania. The model parameters estimated using the dataset of the 2002 Liv-
ing Standard Measurement Study (LSMS) is combined with the 2001 Population
and Housing Census (PHC) covariate information. PHC and LSMS are both con-
ducted by the INSTAT (Albanian Institute of Statistics).

The 2002 LSMS provides individual level and household level socio-econo-
mic data from 3,599 households drawn from urban and rural areas in Albania.
Geographical referencing data on the longitude and latitude of each household
were also recorded using portable GPS devices (World Bank and INSTAT, 2003).
The sample was designed to be representative of Albania as a whole, Tirana, other
urban/rural locations, and the three main agro-ecological areas (Coastal, Central,
and Mountain). The survey was carried out by the Albanian Institute of Statistics
(INSTAT) with the technical and financial assistance of the World Bank.

The Republic of Albania is divided in 3 geographical levels: prefectures,
districts and communes. There are 12 prefectures, 36 districts and 374 communes,
however the LSMS survey, which provides valuable information on a variety of
issues related to living conditions in Albania, is stratified in 4 large strata (Costal
Area, Central Area, Mountain Area and Tirana) and these strata are the smaller
domain of direct estimation.

The covariates selected to fit the geoadditive SAE model are chosen follow-
ing prior studies on poverty assessment in Albania (Betti et al., 2003; Neri et al.,
2005). The selected household level covariates are: size of the household (in term
of number of components); information on the components of the household (age
of the householder, marital status of the householder, age of the spouse of the
householder, number of children 0-5 years, age of the first child, number of com-
ponents without work, highest level of education in the household); information
on the house (building with 2-15 units, built with brick or stone, built before 1960,
number of rooms per person, house surface < 40 m2, house surface 40− 69 m2,
wc inside); presence of facilities in the dwelling (TV, parabolic, refrigerator, wash-
ing machine, air conditioning, computer, car); ownership of agricultural land.
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All these variables are available both in LSMS and PHC surveys (see Neri
et al. (2005) for comparability between the two sources); in addition, the geo-
graphical location of each household is available for the LSMS data.

The response variable is the logarithm of the household per-capita consump-
tion expenditure. The use of the logarithmic transformation is typical for this type
of data as it produces a more suitable response for the regression model.

Estimates of the log per-capita consumption expenditure in each of the 36
district area are derived using the geoadditive SAE model presented in (13).

After the preliminary analysis of various combination of parametric and non-
parametric specifications for the selected covariates, the chosen model is com-
posed by a bivariate thin plate spline on the universal transverse Mercator (UTM)
coordinates, a linear term for all the other variables and a random intercept com-
ponent for the area effect.

Almost all the parameters are highly significant at 5% level. The exceptions
are the coefficients of ’marital status of the householder’, ’number of children 0-
5 years’ and ’built with brick or stone’ that are significant at 5% level, and the
coefficient of ’building with 2-15 units’ that is significant at 10% level.

The geoadditive SAE model (13) considers two random effects, once for the
bivariate spline smoother and once for the small area effect, thus the estimated
value of the log per-capita consumption expenditure in a specific location is ob-
tained as sum of two components, once continuous over the space and once con-
stant in each small area showing the presence of both a spatial dynamic and a
district level effect in the Albanian consumption expenditure.

Figure 1: District level estimates of the mean of household log per-capita consumption
expenditure.

log per-capita consumption

8.36 - 8.53

8.53 - 8.82

8.82 - 8.98

8.98 - 9.23

9.23 - 9.52
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The estimated parameters are then combined with the census mean values
to obtain the district level estimates of the average household log per-capita con-
sumption expenditure.

The mean square errors (MSEs), and consequently the coefficients of varia-
tions (CVs), are calculated using the robust MSE estimator of Salvati et al. (2010).
All the CVs are less that 2%, with a mean value of 0.91%, thus the estimates have
low variability. The higher values are registered in those districts where the sam-
ple size is quite low.

The results (Figure 1) show a clear geographical pattern, with the higher val-
ues in the south and south-west of the country and the lower value in the moun-
tainous area (north and north-east). These results are consistent with previous
applications on the same datasets presented in literature (Neri et al., 2005; Tza-
vidis et al., 2008). Refer to Bocci (2009) for more details on this application.

4. M-QUANTILE GWR SPATIAL MODELS

Following the M-quantile approach it is possible to specify a local M-quantile
small area model via an M-quantile GWR model. Unlike SAR mixed models, M-
quantile GWR models are local models that allow for a spatially non-stationary
process in the mean structure of the model. This is obtained by assuming that the
regression coefficients vary spatially across the geography of interest. The spatial
extension to linear M-quantile regression is based on Geographically Weighted
Regression (GWR) (see Brunsdon et al. (1996)) that extends the traditional re-
gression model by allowing local rather than global parameters to be estimated.
Here we report a brief description of the M-quantile GWR model following a
recent paper by Salvati et al. (2012).

Given n observations at a set of L locations {ul; l = 1, . . . ,L;L ! n} with nl
data values {(y jl,x jl); i= 1, . . . ,nl} observed at location ul , a linear GWR model is
a special case of a locally linear approximation to a spatially non-linear regression
model and is defined as follows

y jl = xT
jlβ(ul)+ ε jl, (19)

where β(ul) is a vector of p regression parameters that are specific to the location
ul and the εil are independently and identically distributed random errors with
zero expected value and finite variance. The value of the regression parameter
‘function’ β(u) at an arbitrary location u is estimated using weighted least squares
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where dul ,u denotes the Euclidean distance between ul and u and b > 0 is the
bandwidth. As the distance between ul and u increases the spatial weight de-
creases exponentially. For example, if w(ul,u) = 0.5 and w(um,u) = 0.25 then
observations at location ul have twice the weight in determining the fit at location
u compared with observations at location um. See Fotheringham et al. (2002) for
a discussion of other weighting functions.

We can extend the M-quantile model

Qq(x j;ψ) = xT
j βψ(q). (21)

to specify a linear model for the M-quantile of order q of the conditional distribu-
tion of y given X at location u, writing

Qq(x jl;ψ,u) = xT
jlβψ(u;q), (22)

where now βψ(u;q) varies with u as well as with q. Like (19), we can interpret
(22) as a local linear approximation, in this case to the (typically) non-linear order
q M-quantile regression function of y on X, thus allowing the entire conditional
distribution (not just the mean) of y given X to vary from location to location. The
parameter βψ(u;q) in (22) at an arbitrary location u can be estimated by solving

L

∑
l=1

w(ul,u)
nl

∑
j=1

ψq{y jl −xT
jlβψ(u;q)}x jl = 0, (23)

where ψq(ε) = 2ψ(s−1ε){qI(ε > 0) + (1 − q)I(ε ! 0)}, s is a suitable robust
estimate of the scale of the residuals y jl − xT

jlβψ(u;q), e.g. s = median|y jl −
xT

jlβψ(u;q)|/0.6745, and we will typically assume a Huber Proposal 2 influence
function, ψ(ε) = εI(−c ! ε ! c) + sgn(ε)I(|ε| > c). Provided c is bounded
away from zero, we can solve (23) by combining the iteratively re-weighted least

β̂(u) =
{ L

∑
l=1

w(ul,u)
nl

∑
i=1

x jlxT
jl

}−1{ L

∑
l=1

w(ul,u)
nl

∑
i=1

x jly jl

}
,

where w(ul,u) is a spatial weighting function whose value depends on the distance
from sample location ul to u in the sense that sample observations with locations
close to u receive more weight than those further away. In this paper we use a
Gaussian specification for this weighting function

w(ul,u) = exp
{
−d2

ul ,u/2b2
}
, (20)
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squares algorithm used to fit the ‘spatially stationary’ M-quantile model (21) and
the weighted least squares algorithm used to fit a GWR model (Salvati et al.,
2012).

Note that estimates of the local (GWR) M-quantile regression parameters are
derived by solving the estimating equation (23) using iterative re-weighted least
squares, without any assumption about the underlying conditional distribution of
y jl given x jl at each location ul . That is, the approach is distribution-free. For
details see Salvati et al. (2012). SAR models allow for spatial correlation in the
model error structure to be used to improve SAE. Alternatively, this spatial infor-
mation can be incorporated directly into the M-quantile regression structure via
an M-quantile GWR model for the same purpose.

We now assume that we have only one population value per location, allowing
us to drop the index l. We also assume that the geographical coordinates of every
unit in the population are known, which is the case with geo-coded data. The aim
is to use these data to predict the area d mean of y using the M-quantile GWR
model (22).

Following Chambers and Tzavidis (2006), and provided there are sample ob-
servations in area d, an area d specific M-quantile GWR coefficient, θ̂d can be
defined as the average value of the sample M-quantile GWR coefficients in area
d, otherwise we set θ̂d = 0.5. Following Tzavidis et al. (2010), the bias-adjusted
M-quantile GWR predictor of the mean Ȳd in small area d is then

ˆ̄Y MQGWR/CD
d = N−1

d

[
∑

j∈Ud

Q̂θ̂d
(x j;ψ,u j)+

Nd

nd
∑
j∈sd

{y j − Q̂θ̂d
(x j;ψ,u j)}

]
, (24)

where Q̂θ̂d
(x j;ψ,u j) is defined via the MQGWR model (22).

4.1 AN EXAMPLE IN OFFICIAL STATISTICS: ESTIMATES OF THE INCOME
AVERAGE AT MUNICIPALITY LEVEL IN TUSCANY

The aim of this application is to estimate the mean of equivalised household
income at municipality level Ȳd in Tuscany using ˆ̄Y MQGWR/CD

d , the M-quantile
GWR predictor of the mean. The maps of Figure 2 will contrast the results of
the MQGWR model with the results obtained by the ordinary M-quantile linear
model.

Available data to measure poverty and living conditions in Italy come mainly
from sample surveys, such as the Survey on Income and Living Conditions (EU-
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SILC). The data on the equivalised income in 2007 for 59 of the 287 Tuscany
municipalities are available from the EU-SILC survey 2008. However, EU-SILC
data can be used to produce accurate estimates only at the NUTS 2 level (that
is, regional level). To satisfy the increasing demand from official and private
institutions of statistical estimates on poverty and living conditions referring to
smaller domains (LAU 1 and LAU 2 levels, that is provinces and municipalities),
there is the need to resort to small area methodologies.

A set of explanatory variables is available for all the 287 municipalities from
the Population Census 2001. We employ the M-Quantile GWR model for estimat-
ing the mean of household income in each of the 287 Municipalities (LAU 2) Note
that with the spatial information included in the model we can obtain estimates for
the 228 out of sample areas (areas with no sample units in it).

The selection of covariates to fit the small area models relies on prior studies
of poverty assessment and on the availability of data.

More details can be found in the deliverables of the SAMPLE project (7FP
Small Area Methods for Poverty and Living conditions Estimates www.sample-
project.eu). In this example the MQGWR model uses spatial information to esti-
mate the target statistics in the out-of-sample areas. Indeed synthetic estimates in
the out-of-sample areas can be obtained also using the M-quantile linear model:
this can be done letting the area representative quantile, θi, be equal to 0.5.

MQ MQGWR

Figure 2: Estimates of the mean of equalized household income in the Municipalities of
Tuscany
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In Tuscany there is evidence of relevant (relative) poverty in the province of
Massa-Carrara and Grosseto (Figure 2). However if analysed as stand alone region
we can see dissimilarities between provinces and municipalities. Using spatial in-
formation we obtained estimates of the averages of the households equivalised
income at LAU 2 level in Tuscany: looking at the estimates some dissimilari-
ties between the provinces emerge. Above all under MQGWR model we capture
more heterogeneity among municipalities. This results show the importance to
“go deeper”, i.e. obtain estimates at the lowest domain level and, at the same
time, enphasise the importance of spatial information; see Giusti et al. (2012) for
further details.

5. CONCLUSIONS

The increasing request of small area statistics is motivated by their growing use in
formulating policies and programmes, in the allocation of government funds and
in regional planning. Demand from the private sector has also increased because
business decisions, particularly those related to small businesses, rely heavily on
the local socio-economic, environmental and other conditions. Statistical surveys
produce high quantities of data and estimates, but cost constraints in the design of
sample surveys lead to small sample sizes within small areas. As a result, direct
estimation using only the survey data is inappropriate as it yields estimates with
unacceptable levels of precision. In such cases increasing the sample size can
be a feasible alternative to small area estimation but may be too expensive even
for national statistical institutes (see also the SMART system active on the Istat
website http://smart.istat.it/smart/).

Small area estimation (SAE) is performed via models that "borrow strength"
by using all the available data and not only the area specific data. Auxiliary in-
formation can also consist of geo-coded data about the spatial distribution of the
domains and units of interest, obtained via geographic information systems. For
example, the data can be obtained from digital maps that cover the domains of in-
terest and so allow for the calculation of the centroids of the these domains, their
borders, perimeter, areas and the distances between them. All these attributes
are commonly available in official statistical agencies and they are helpful in the
analysis of socio-economic data relating to these domains since these often dis-
play spatial structure, i.e. they are correlated with the so-called geography of the
landscape.
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In this context it is useful to recall the so called first law of geography: "ev-
erything is related to everything else, but near things are more related than distant
things" (Tobler, 1970). The law is valid also for small geographical areas: close
areas are more likely to have similar values of the target parameter than areas that
are far from each other.

The applications presented here show the importance of using georeferenced
information and it is evident that an adequate use of geographic information and
geographical modelling can help in producing more accurate estimates for small
area parameters.

The direct survey estimates based on small sample sizes can be considerably
improved by using the area specific small area models. The spatial autocorrelation
amongst the neighbouring areas may be exploited for improving the direct survey
estimates. However, the model can be applied after studying the significant corre-
lation amongst the small areas by virtue of their neighbourhood effects. In case of
poor relation between the dependent and exogenous variables, the simple spatial
model with intercept only, may equally improve the estimates. This model uses
only the spatial autocorrelation to strengthen the small area estimates and do not
require the use of exogenous variables. The spatial models, by using the appro-
priate weight matrix W, or a combination of weight matrices, can considerably
improve the estimates. Weight matrix should be based on logical considerations
and it may be used effectively for the cases, if for some reasons, reliable ex-
ogenous variables are not available. In addition one has to be careful about the
increase in the MSE due to the variability caused by replacing the parameters by
their estimates.

Spatial models in SAE help to exploit the information from the spatial dis-
tribution of individuals, groups and institutions, making it possible for the re-
searchers to examine aspects that might not otherwise be evaluated, allowing
gains of interpretation and knowledge of the phenomena under study and obtain-
ing more accurate estimates.
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