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Abstract

The clinical course of a disease is often characterized by the possible occurrence of
several types of events, each one having a specific role for the evaluation of the therapeutical
strategies. The event occurring as first is of particular interest, since it could be considered
as ’’treatment failure’’ or ’’response to treatment’’. The measure of concern is the crude
cumulative incidence, i.e. the probability of developing a specific event as first accounting
for the competing action of the other events. A widespread approach to infer on this
quantity, accounting for the effect of covariates, is the semi-parametric Cox regression
model on the cause specific hazard. However, it has to be pointed out as the inference on
the prognostic impact of a covariate on the cause specific hazard cannot be extended to the
crude cumulative incidence. To face this issue, Fine and Gray (1999) observed as the crude
cumulative incidence can be thought as the incidence associated to a quantity referred as
subdistribution hazard. They proposed a semi-parametric regression model, accounting
for the covariate effects. Despite the crude cumulative incidence is of interest in several
clinical applications, Fine and Gray’s model has not been routinely applied in the medical
literature.

Aiming at promoting the application of this model, the present note emphasizes the
differences between the Cox model on the cause specific hazard and Fine and Gray’s model
on the subdistribution hazard, resorting to a standard probabilistic formalism.

To enlighten the differences between the results of the two inferences, themodels are
applied on two historical data sets; a carcinogenesis experiment on mice and a clinical trial
on breast cancer patients.

Keywords: competing risks, crude cumulative incidence, subdistribution hazard, survival
analysis
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1. INTRODUCTION

The clinical course of a disease is often characterized by the possible occurrence
of several events, with different incidences and specific roles for the evaluation of
the therapeutical strategies. In several clinical studies, the events are recorded
sequentially during the patient’s follow-up. The event occurring as first is of
particular interest, since it could be considered as ’’treatment failure’’ or ’’response
to the treatment’’. The events can be thought as ’’competing’’ with each other to
originate the failure.

In the phase of treatment planning, or when the efficacy of different treatments
is compared, the measure of concern is the probability of developing a specific
event as first. This is generally referred as ’’crude cumulative incidence’’ (CCI)
of the event (Kay and Schumacher, 1983; Korn and Dorey, 1992; Pepe and Mori,
1993; Fine and Gray, 1999).

To infer on the treatment effect, as well as on other covariates effect, on the
CCI of a given event, regression models suitable to account for the competing
action of the other events have to be used. A widespread approach involves
the semi-parametric Cox regression model on the cause specific hazard (CSH),
i.e. the hazard of failure due to the event of interest considering at risk subjects
free from any event. When the aim is to investigate disease dynamic to support
biological hypotheses on the course of the disease, the CSH has a meaningful
interpretation. For example, the shape of the hazard for local-regional and/or
distant recurrence during the first 4 years after surgery provided information on the
metastasis process in breast cancer patients undergoing primary tumour removal
(Demicheli et al., 2004). However, it has to be pointed out as the prognostic
impact of a covariate on CSH cannot be extended to CCI. This motivated the
development of nonparametric tests to compare CCI functions regarding different
levels of a discrete covariate (Gray, 1988; Pepe, 1991; Pepe and Mori, 1993; Aly
et al., 1994; Lin, 1997; Carriere and Kochar, 2000; Mc Keague et al., 2001). To
model the covariate effects on CCI, Fine and Gray (1999) observed as the CCI can
be viewed as the incidence associated to a quantity referred as the subdistribution
hazard (SDH). Unlike CSH, in SDH the subjects are considered at risk if they did
not develop the event of interest, regardless of whether they developed any other
event. A semi-parametric model based on the SDH, akin to the Cox model for
univariate failure times, has been proposed (Fine and Gray, 1999).

As far as we are concerned, although CCI is the measure of interest in several
clinical applications, SDH regression models are not routinely applied in the
medical literature. A possible complication to the use of SDH based models might
be that unlike CSH ratios, which are well-known to clinical/biological researchers,
SDH ratios do not have a straightforward clinical interpretation. In addition, the



Competing risks: modelling crude cumulative incidence functions 27

computing facilities, that for the Cox model are provided in standard statistical
software, for the SDH based model are available only in the S environment.

Aiming at stimulating the adoption of appropriate inference procedures on
CCI, the present note points out the differences between results of inferences
based on CSH and on SDH. Some theoretical aspects of the time functions
for competing risks, nonparametric estimation of incidence curves, and semi-
parametric regression models are described using a standard probabilistic
formalism. The theoretical properties of statistical tests for SDH regression
models described in the Fine and Gray’s (1999) paper, are not treated in detail,
given their complexity. The relationships between SDH and CCI are discussed
and the relative risk is proposed as a measure of the covariate prognostic impact
on CCI.

The models based on CSH and SDH are applied on two historical data sets: a
standard carcinogenesis experiment on animal models, and a randomized clinical
trial on breast cancer patients. In the carcinogenesis experiment, 177 male mice
exposed to X- radiation were placed in two different laboratory environments
and followed till death (Hoel and Walburg, 1972). Complete information on time
and cause of death was available (absence of censoring). Each cause of death
is investigated accounting for the covariate laboratory environment and for the
action of competing causes. In the clinical trial, the effect of the type of surgery
and other 5 clinical covariates on the time to death was investigated on 716 breast
cancer patients enrolled at the Istituto Nazionale per lo Studio e la Cura dei Tumori
di Milano between 1964 and 1968 (Valagussa et al., 1978). For illustrative aims,
here we consider breast cancer mortality and we treat mortality due to other causes
as a competing event.

In section 2 (Methods), the time functions for competing risks and semi-
parametric regression models on CSH and SDH are introduced. The role of
censoring on the score functions of the SDH model is also described. In section
3 (Application examples) the data sets are described and the results achieved
by CSH and SDH models are reported. The differences attained by the two
approaches are discussed.

2. METHODS

2.1 TIME FUNCTIONS FOR COMPETING RISKS

Let us consider a generic population’s subject who has been submitted to a
therapeutic intervention. The treatment failure is defined as the occurrence of
the first event among the R 5 2 possible competing events (causes of failure),
enumerated by r = 1, 2, ..., R. Let Tf be the random variable (r.v.) ’’failure time’’,
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defined as the time elapsed from the beginning of the period of observation and
the occurrence of the failure. Tf can be thought as the minimum of the set of the
potential times {T1, ..., TR} of occurrence of the whole set of events. The couple
of r.v. of concern is (Tf , :f ), where :f represents the cause that originated the
failure.

The CSH of the rth cause is defined as the instantaneous hazard of failure due
to the rth cause

hr(t) = lim
¹tY0+

1

!t
· Pr
(
t < Tf 4 t+!t ; :f = r | Tf > t

)
(1)

where ’’;’’ denotes the intersection operator. It has to be pointed out as hr(t)
defined as (1), does not match the ordinary definition of hazard of a r.v.
In fact it cannot be defined any r.v. Y such as hY (t) = lim¹tY0+

1
¹t ·

Pr {t < Y 4 t+!t | Y > t} = hr(t). Thus, the relationship linking the hazard
function to the corresponding survival function (see Marubini and Valsecchi, 1995
p.145-146) cannot be used to derive a survival function starting from hr(u). As a
consequence, the cause specific survival function (CSS) defined as

Gr(t) = exp

:
 
z t

0
hr(u)du

;
(2)

does not represent a survival function.
Assuming that simultaneous causes of failures cannot occur, the relationship

between the CSHs and the hazard of failure (due to any cause), defined as

hTf (t) = lim
¹tY0+

1

!t
· Pr {t < Tf 4 t+!t | Tf > t} (3)

is

hTf (t) = lim
¹tY0+

1

!t
·
Rx

r=1

Pr
(
t < Tf 4 t+!t ; :f = r | Tf > t

)
=

=
Rx

r=1

hr(t) (4)

Thus, the hazard of failure due to any cause is the summation of the CSHs of
each possible cause. The failure free survival

STf (t) = Pr {Tf > t} = exp

:
 
z t

0
hTf (u)du

;
(5)

is related to the CSSs {G1(t), ...,Gr(t), ...,GR(t)} through
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STf (t) =
Ry

r=1

exp

:
 
z t

0
hr(u)du

;
=

Ry

r=1

Gr(t)

The CCI of the rth cause is the probability of failure due to the rth cause

Fr(t) = Pr
(
Tf 4 t ; :f = r

)

that can be written as

Fr(t) =

z t

0
fr(u)du (6)

where

fr(t) = lim
¹tY0+

1

!t
· Pr
(
t < Tf 4 t+!t ; :f = r

)
(7)

is commonly referred as subdistribution density function for the rth cause.
Let us observe as fr(t) is an improper probability density function, beingr +?
0 fr(u)du = limtY+? Fr(t) = Pr

(
:f = r

)
< 1. From (7), (5) and (1),

fr(t) can be written in terms of STf (t) and hr(t) as

fr(t) = hr(t) · STf (t) (8)

Moreover, substituting (8) in (6), Fr(t) can be related to hr(t) through

Fr(t) =

z t

0
hr(u) · STf (u)du (9)

Thus, to derive Fr(t) from hr(t), the knowledge of STf (t) is needed, which, from
(5) and (4) depends on the whole set of CSHs.

From (6) Fr(t) can be written in terms of fr(t), which can be proved to be the
continuous part of the distribution of a fictitious r.v. Tr defined on R+ { {+Q}

Tr = Tf · I
 
:f = r

!
+Q · I

 
:f V= r

!
(10)

In fact, for t R R+, lim¹tY0+ 1
¹t · Pr {t < Tr 4 t+!t } = fr(t), and the

discrete component (for t = +Q) is Pr {Tr = +Q} = Pr
(
:f V= r

)
. Tr

can be thought as the failure r.v. in an artificial competing risks setting, where
improvements care or maintenance lead to +Q the times for the causes different
from the rth (Crowder, 2000).

The hazard function of Tr (subdistribution hazard) is
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hTr(t) = lim
¹tY0+

1

!t
· Pr {t < Tr 4 t+!t | Tr > t} (11)

that can be written in terms of
 
Tf , :f

!
as

hTr(t) = lim
¹tY0+

1

!t
·
Pr
(
t < Tf 4 t+!t ; :f = r

)

Pr
(
(Tf > t) { (Tf 4 t ; :f V= r)

) = (12)

=
fr(t)

1 Pr
(
Tf 4 t ; :f = r

) =
fr(t)

1 Fr(t)
(13)

From (13) and (8), the relationship between hTr(t) and hr(t) is

hTr(t) = hr(t) ·
STf (t)

1 Fr(t)

and, being STf (t) = 1  Pr {Tf 4 t} = 1  
Rp

j=1
Fj(t) 4 1  Fr(t), it follows

(for any t)
hTr(t) 4 hr(t) (14)

The cumulative incidence of Tr, for t R R+, is

FTr(t) = Pr {Tr 4 t} = Pr
(
Tf 4 t ; :f = r

)
= Fr(t) (15)

and

FTr(+Q) = lim
tY+?

Fr(t) + Pr {Tr = +Q} =

= Pr
(
:f = r

)
+Pr

(
:f V= r

)
= 1

Let us observe as hTr(t) does match the definition of hazard of a r.v. As a
consequence the relationship that links the hazard of a r.v. to the corresponding
survival (that for Tf is the (5)), can be used to derive 1 FTr(t) from hTr(t). This
together with (15), implies thatFr(t) can be directly obtained from hTr(t) through

Fr(t) = 1 exp
:
 
z t

0
hTr(u)

;
= 1 exp { HTr(t)} (16)

where HTr(t) is the cumulative subdistribution hazard.
Let us observe as from (16), (2) and (14) it follows (for any t)

Fr(t) 4 1 Gr(t) (17)
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2.2 SUBDISTRIBUTION HAZARD AND RIGHT CENSORING

Let us consider the case of right censoring, that is typical when dealing with
survival data. Two r.v. are considered: the failure time Tf and the censoring time
C (i.e. the time elapsed from the beginning and the end of the subject’s period
of observation). The data can be represented by the couple of r.v. (T, :), where
T = min {Tf , C}, : = 0 if T = C, and : = :f if T = Tf . If : V= 0 the subject
is said to be uncensored, whereas if : = 0 the subject is said to be censored.

In several studies, a common length (M ) of the period of observation is planned
for any subject, andTf may observed only ifTf < M . We can distinguish between
two situations: i) all the subjects are recruited at the beginning of the study and a
common ending date definesM , ii) the subjects may enter at different recruitment
dates, however an ending date specific for each subject guarantees M . Other
studies present the situation iii) where the subjects may enter at different dates but
a common ending date is fixed (i.e. the length of the period of observation can
vary). If accidental losses to follow-up do not occur within the planned period
of observation, we say the data are submitted to administrative censoring. The
cases i) and ii) are referred as type I censoring, whereas the case iii) is referred
as generalized type I censoring (Klein and Moeschberger, 1997). Fine and Gray
(1999) refer this kinds of censoring as ’’censoring complete’’, enlightening that
regardless of whether a common length of the period of observation is planned or
not, the censoring time C is known at the recruitment.

Accidental losses to follow-up may happen when the subject experiences
an event other than the causes of failure considered, that stops the period of
observation. In this case C is equal to the time elapsed between the recruitment
date and the occurrence of such event. This kind of censoring is referred as random
censoring (Klein and Moeschberger, 1997). When the events that originate the
random censoring can be considered independent from the R causes of failure,
censoring is said to be non informative. Let us observe that, differing from the
case of censoring complete (where C is known for any subject) in the case of
random censoring C is known only if the subject is actually censored, whereas if
the failure occurs within the period of observation, the only information available
is C > Tf and less or equal than the subject’s period of observation.

It is worth of note as these kinds of censoring are routinely dealt in classical
survival analysis, provided the non informativeness. In the presence of competing
risks, although some authors refer the occurrence of causes of failure different
from that of interest as ’’censoring due to competing risks’’, in the rest of this
note censoring will be intended as a non informative interruption of the patient’s
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follow-up.
In the presence of right censoring, Tr is no longer observable for the censored

subjects. From (10) it follows that a censored time (i.e. T = C) cannot be
attributed to any of the two conditions used to define Tr. In this case, the definition
(12) does not allow to express the SDH in terms of the observed r.v. (T, :).
However, if C is independent from

 
Tf , :f

!
, and C is observed (i.e. type I/

generalized, or if the patient is lost to follow-up after the occurrence of a non
fatal causes of failure k V= r) it can be proved as the quantity

lim
¹tY0+

1

!t
· Pr {t < Tr 4 t+!t | Tr > t ; C > t} (18)

is equal to hTr(t).
Considering

 
Tf , :f

!
and C, (18) can be written as

lim
¹tY0+

1

!t
·

Pr
(
t < Tf 4 t+!t ; :f = r ; C > t

)

Pr
(
(Tf > t ; C > t) { (Tf 4 t ; :f V= r ; C > t)

) (19)

= lim
¹tY0+

1

!t
·

Pr
(
t < Tf 4 t+!t ; :f = r ; C > t

)

Pr
("
(Tf > t) { (Tf 4 t ; :f V= r)

#
; C > t

) (20)

and using the assumption of non informative censoring, it follows

lim
¹tY0+

1

!t
·
Pr
(
t < Tf 4 t+!t ; :f = r

)
· Pr {C > t}

Pr
(
(Tf > t) { (Tf 4 t ; :f V= r)

)
· Pr {C > t}

= hTr(t)

It can be proved as (18) involves only the observed r.v. (T, :) and C, in fact
(19) can be written as

hTr(t) = lim
¹tY0+

1

!t
·

Pr {t < T 4 t+!t ; : = r }
Pr {T > t { (T 4 t ; : V= r;C > t)} (21)

Finally, by considering (21) in (16), the Fr(t) can be still expressed in terms of
the observed r.v. (T, :) and C.
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2.3 ESTIMATION AND TEST

2.3.1 INFERENCE ON (Tf , :f )

Given a sample ofN subjects (indexed by i = 1, ..., N), let (T1, :1) , .., (TN , :N)
be the r.v. (T, :) on the sample with realizations {(t1, :1) , .., (tN , :N)}. Let(
t(1), ..., t(L)

)
be the ordered observed failure times (indexed by l = 1, ..., L) and

t(0) = 0. If Tf (regardless of the cause of failure) is of concern, the common
approach to estimate the survival function (5) is the Kaplan-Meier. Moreover,
under the proportional hazards assumption, in the light of the relationship (5),
survival curves can be compared by the log-rank test on the equality of the hazards
of failure. To measure the impact of a vector of covariates X on the hazard of
failure, the Cox regression model on (3) is commonly used.

If the attention is focused on the time to occurrence of the rth cause of failure
and the time function of interest is the CSH, the times to failure due to causes
k V= r are considered as censored (in a coherent way to (1)). In this setting,
the application of the Kaplan-Meier method provides an estimate of the CSS (2),
which is not of practical interest. However, the corresponding log-rank test leads
to the comparison of the CSHs. The impact ofX on the CSH can be evaluated by
the Cox regression model.

The classical approach to infer on the CCI curves resorts to relationship (9).
The CCIs curve for discrete covariate levels are estimated by the nonparametric
estimator (see Marubini and Valsecchi, 1995 p. 338)

£Fr(t) =
x

l|t(l)At

£hr(t(l)) · £STf (t(lP1)) (22)

where £hr(t(l)) = dr(t(l))/n(l), dr(t(l)) is the number of failures due to the
rth cause occurred at t(l), and n(l) the number of subject at risk of failure at

t(l); £STf (t(lP1)) is the Kaplan-Meier estimate of the failure free survival (5) and
£STf (t(0)) = 1. To compare CCIs specific nonparametric tests (Gray, 1988; Pepe,
1991; Pepe and Mori, 1993; Aly et al., 1994; Lin, 1997; Carriere and Kochar,
2000) have to be used.

However, if the quantity of interest is CCI, the natural choice is to refer to
the r.v. Tr and the SDH function. In the next sections we review this topic, with
particular emphasis on the regression model proposed by Fine and Gray.

2.3.2 INFERENCE ON Tr

We need to distinguish among three situations: i) complete data (i.e. absence of
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censoring), ii) censoring-complete and iii) random censoring.

COMPLETE DATA In the case of complete data, the realizations of Tr on
the sample, Tr1, ...,TrN , are observed. The sampling data can be summarized
as
(
(< r

1
, :

1
,x1), ..., (< r

N
, :

N
,x

N
)
)

. For discrete covariate levels an estimate of
Fr(t) equal to (22) is obtained through Kaplan-Meier method on these data. The
risk set at the time t for Tr is er(t) =

(
j : < rj > t

)
, which is coherent with the

conditioning event in SDH (11). Let us observe that being < rj = tj · I(:j =
r)+Q · I(:j V= r), er(t) includes: i) the subjects {j : tj 5 t} who are still at risk
of failure at t, and ii) the subjects

(
j : (tj 4 t) | (:j V= r)

)
who had a first event

different from the rth (i.e. < rj = +Q) by the time t. Thus, er(t), that we refer as
’’modified’’ risk set, can be written in terms of the realizations of (T, :) as

er(t) =
(
j : (tj > t) { (tj 4 t ; :j V= r)

)
(23)

The log-rank test can be subsequently applied to compare CCIs.
In the light of the relationship (16), an appropriate model for the CCI, based

on the SDH (Fine and Gray, 1999), has to be used. The basic model assumes
proportional SDHs, with the relationship between SDH andX expressed as

hTr(t,X) = hTro(t) · exp(¯
;
r ·X) (24)

where hTro(t) is the baseline hazard and¯r is the vector of regression coefficients.
The Partial likelihood approach (Cox, 1972) is applicable to infer on hTr(t,X).
On the ground of the definition of Tr, considering the risk set er(t) (23), one can
write

PLr =
Ny

i=1

R

VT
exp(¯;r · xi)p

jjer(ti)
exp(¯;r · xj)

S

WU

I(Qi=r)

(25)

obtaining a proper partial likelihood for the improper distribution function
Fr(t;x). The estimates of the regression coefficients can be obtained from the
score function

Ur(¯r) =
Nx

i=1

I (:i = r) ·

B

xi  
p
jjer(ti) xj · exp(¯

;
r · xj)p

jjer(ti) exp(¯
;
r · xj)

C

(26)

Likelihood ratio, Wald, or score statistics can be used for testing covariate effects
(Fine and Gray, 1999). The (25) and (26) show as a regression model on SDH can
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be estimated by a Cox regression model on {< r1 , ..., < rN}.
If the proportional hazards assumption is tenable, the estimation of CCI

for discrete covariate levels can be obtained by adapting the standard Breslow
estimator for the baseline hazard (Breslow, 1974).

In the presence of time-dependent effects, a covariate
vector Z (t)= X*U(t);, where the components of U(t) depend only on t, is
included in the model

hTr(t,X,Z(t)) = hTro(t) · exp
(
¯;r ·X+ ¯

;
rt · Z (t)

)
(27)

where ¯rt is the vector of the regression coefficients for the time-dependent
effects. To address this case, Fine and Gray (1999) proposed an ’’ad hoc’’ strategy
to estimate CCI as function of covariates.

For sake of simplicity, in the rest of this note we consider the case of
proportional hazards (24).

CENSORED DATA In the case of censored data, the realization of Tr is
unobserved for those subjects where C = T . The strategy previously described
for complete data cannot be generally used to estimate CCI for discrete covariate
levels and for the SDH based model (24). However, under the assumption of
independence between (Tf , :f ) and C, the risk set

ecr(t) =
(
j : Trj > t ; Cj > t

)
=
(
j : min(Trj , Cj) > t

)

which is coherent with the SDH (11), can be considered. Let us observe as
ecr(t) includes: i) the subjects {j : Tj 5 t} who did not develop any event
and were not censored by t (i.e. at risk of failure at t) and ii) the subjects(
j : Tj 4 t ; :j V= r ; Cj > t

)
who failed from a cause different from the rth and

were not censored by t. Thus, er(t) can be written in terms of the r.v. (T, :) and
C as

ecr(t) =
(
j : (Tj > t) { (Tj 4 t ; :j V= r; Cj > t)

)
(28)

Let us observe as a subject j who fails at Tj for a cause different from the rth
one, is included in ecr(t) only at times t 4 Cj . Thus, the realization of Cj is
needed to build ecr(t).

CENSORING-COMPLETE In the case of type I censoring, Ci is observed
for any subject, being Ci =M (for i = 1, ...,N). The CCI for discrete covariate
levels and the SDH based model (24) can be estimated by applying Kaplan-Meier
method and Cox model, on the ground of the risk set (28) that for t 4M , reduces



36 P. Boracchi, L. Antolini, E. Biganzoli, E. Marubini

to er(t), defined in (23). Thus, estimates of CCI and SDH for t 4M are equal to
the corresponding ones in the case of complete data.

When generalized type I censoring is considered, Ci is still observed for any
subject, but it is not necessarily constant. Fine and Gray (1999) showed as in case
of censoring complete a proper partial likelihood for the improper distribution
Fr(t) can still be defined with the pertinent score function, which differs from
(26). The Likelihood ratio, Wald, or score statistics are usable for testing covariate
effect (Fine and Gray, 1999).

As this situation can be considered as a particular case of random censoring,
the score function for the latter case is used in practice.

RANDOM CENSORING When the censoring time is unknown for some
sample subjects, the partial likelihood approach is no longer usable, being the
knowledge of the censoring times required for ecr(t). Let us observe as the subjects
{j : Tj > t } surely belong to ecr(t), whereas the subjects

(
j : Tj 4 t ; :j V= r

)

may belong to ecr(t) depending on whether Cj > t or Cj 4 t. The whole set of
patients which either belong or are ’’candidate’’ to belong to ecr(t) is

=r(t) =
(
j : (Tj > t ) { (Tj 4 t ; :j V= r ; :j V= 0)

)
(29)

To address this case, Fine and Gray (1999) suggested a modification of the score
function on the ground of the risk set (29), by an adaptation of the inverse
probability of censoring weighting (IPCW). The IPCW was originally proposed
to take into account the presence of dependent censoring and non-compliance in
AIDS clinical trials (Robins and Rotnitzky, 1993; Robins and Finkelstein, 2000).
A weight equal to the probability of belonging to ecr(t)

wi(t) = Pr {Ci > t|Ci > Ti} (30)

is associated to each subject of =r(t) (29). Let us observe as wr(t) = 1 for the
subjects who surely belong to =r(t) (i.e. Ti > t), being Pr {Ci > t ; Ci > Ti} =
Pr {Ci > Ti}.

Under the assumption of independence between (T, :) and C, the weights
(30) depend only on the distribution of the censoring times. Thus, wi(t) becomes
wi(t) = SC (t) /SC (Ti), where SC (t) is the survival function of the r.v. C on the
whole population.

Let us consider the sampling data
(
(t1, :1 ,x1), ..., (tN , :N ,xN)

)
. wi(t) can

be estimated by £wi(t) = £SC (t) /£SC (ti) where £SC (·) is the Kaplan-Meier
estimate of SC (·). The score function (26) modified with the weighting system
{£w1(t), ..., £wN(t)} becomes
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Urw(¯r) =
Nx

i=1

I (:i = r) ·

B

xi  
p
jj´r(ti) £wj(ti) · xj · exp(¯

;
r · xj)p

jj´r(ti) £wj(ti) · exp(¯
;
r · xj)

C

It is worth of note that only the score function is modified by the weighting,
being the corresponding partial likelihood function left undefined. The weighting
system is extended to the variance matrix of the model, thus only the statistics
based on score function or variance matrix are used for inference on ¯r.

2.4 INTERPRETING AND USING MODEL RESULTS

2.4.1 GENERAL CONSIDERATION ON THE COMPARISON OF A

COVARIATE EFFECT ON CSH AND CCI

Models on CSHs are widely used given their established clinical interpretation
for disease dynamic. However, it has to be pointed out as when the focus is
also on CCIs, the prognostic role of X on CSHs can be considerably different
from the corresponding one on CCIs. In fact, from (9), there is not a direct
relationship between hr(t) and Fr(t). Let us consider for instance two covariate
patterns (x1 and x2). If hr(t,x1) > hr(t,x2) (for any t) this does not imply
Fr(t,x1) > Fr(t,x2) (for any t) as can be noticed from the following counter
example. Let us consider the case of R = 2 with constant CSHs: h1(x1) = 3,
h2(x1) = 12, h1(x2) = 2, h2(x2) = 4, and let r = 1 be the event of interest.
Starting from (9) we can write for k = 1, 2

F1(t,xk) =
h1(xk)

h1(xk) + h2(xk)
· {1 exp [ (h1(xk) + h2(xk)) · t]}

obtaining the CCI functions plotted in Figure 1, which cross at t = 0.1. Thus,
while the ratio h1(x1)/h1(x2) is constant over time, F1(t,x1) is not always
greater than F1(t,x2).
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Figure 1: CCI of the event 1, corresponding to the covariate patterns x1 and x2.

2.4.2 RELATIONSHIP BETWEEN INFERENCE ON MODEL

COEFFICIENTS AND CRUDE CUMULATIVE INCIDENCE

If Tf is of interest, the regression coefficients estimated from the Cox model
enable to obtain an estimate of the hazard ratio of failure, which is a clinically
interpretable measure usually reported.

When conducting inference on CCI curves through Fine and Gray’s model, the
SDH ratios can be estimated from the regression coefficients. However, unlike the
hazard of failure, SDH does not have a ’’physical’’ interpretation. Thus, although
the prognostic role ofX on SDHs can be tested by Wald statistic on ¯r, if the null
hypothesis ¯r = 0 is rejected, it is relevant to investigate how the information
provided by the inference on ¯r can be extended to CCIs.

Under model (24), for two covariate patternsx1 andx2 such as £̄
;
r·x1 <

£̄ ;
r·x2,

the estimated SDH ratio (SDHR) |SDHRr(t,x2/x1)=£hTr(t,x2)/£hTr(t,x1) is
greater than 1. From (16) it follows that £Fr(t,x1) < £Fr(t,x2) for any t. In
such a case results of the inference on ¯r can be directly extended to CCIs.

In the presence of time dependent effects (27), the results of the inference on¯r
cannot be directly extended to CCIs and a careful examination of the shape of the
logarithm of the SDHR (logSDHR), that now is a function of time, is needed. If

log
¯
|SDHRr(t,x2/x1)

°
> 0 (for any t) it follows £Fr(t,x1) < £Fr(t,x2) for any
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t, while CCI curves may cross each other if log
¯
|SDHRr(t,x2/x1)

°
changes its

sign. This is shown by the following examples.
Starting from the SDH functions for the covariate patterns

x1, x2, x3 (Figure

2, panel (a)), considering x1 as reference, log
¯
|SDHRr(t,x2/x1)

°
is always

greater than 0, and log
¯
|SDHRr(t,x3/x1)

°
is not constant in sign (Figure 2,

panel (b)).
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Figure 2: Relationship between logSDHR and CCI for covariate patterns x1 (reference), x2,
x3. The SDH of x1 not crossing the SDH of x2 but crossing (once) the SDH of x3. (a): SDH

functions. (b): LogSDHR functions. (c): Cumulative SDH functions. (d): CCI functions.

It can be noticed as being £hTr(t,x2) > £hTr(t,x1) for any t, the same ordering
is maintained also for the corresponding cumulative hazard (Figure 2, panel (c))
and for CCIs (Figure 2, panel (d)). By contrast, £hTr(t,x3) > £hTr(t,x1) only for
t > 0.22, this reflects in a crossing between the cumulative SDHs (Figure 2, panel
(c)) and between CCIs (Figure 2, panel (d)) at t = 0.30.

Starting from the SDH functions for the covariate patterns x4 and x5, where
£hTr(t,x4) > £hTr(t,x5) for 0.68 4 t 4 2.16 (Figure 3, panel (a)), the

log
¯
|SDHRr(t,x5/x4)

°
is not constant in sign (Figure 3, panel (b)). However,
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the functions £HTr (t,x4) and £HTr (t,x5) (Figure 3, panel (c)), £Fr(t,x4) and
£Fr(t,x5) (Figure 3, panel (d)) do not cross each other.
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Figure 3: Relationship between logSDHR and CCI for covariate patterns x4, x5. The SDH of

x4 (reference) crossing twice the SDH of x5. (a): SDH functions. (b): LogSDHR function. (c):

Cumulative SDH functions. (d): CCI functions.

These examples showed as in the presence of time dependent effects, the
patterns of CCI curves cannot be generally derived from the corresponding
patterns of the logSDHR functions, and the estimation of CCI curves is needed.

2.4.3 REPRESENTATION OF MODEL RESULTS

To provide a measure of the impact of covariates on the CCI, we can resort to
one of the well-known quantities used in epidemiological studies. The commonly
used measures are: the risk ratio (or relative risk), the risk difference and the odds
ratio (King and Zeng, 2002), which can be calculated (at any time point t) from the
model estimated CCIs. Considering that the impact of covariates in the Cox model
is commonly evaluated in terms of hazards ratio, a natural choice is resorting to
the relative risk (RR).

The estimated RR of the CCI at the time point t, for two covariate patterns x1
and x2, is the probability ratio
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¥RRr(t,x2/x1) =
£Fr(t,x2)
£Fr(t,x1)

Considering the relationship between CCI and cumulative SDH, ¥RRr(t,x2/x1)
can also be written starting from the SDHs as

¥RRr(t,x2/x1) =
1 exp

¯
 £HTr (t,x2)

°

1 exp
¯
 £HTr (t,x1)

°

For the sake of clarity it has to be pointed out as the ¥RRr(t,x2/x1) in general
differs from |SDHRr(t,x2/x1) = £hTr (t,x2) /£hTr (t,x1). This can be argued
considering that in the presence of proportional SDHs, RR varies over time.
For instance, let us consider the SDH functions reported in Figure 4, panel (a),
referring to covariate patterns x1, x2 and x3, where x1 is the reference. The
corresponding RRs and the SDHRs are reported in Figure 4, panel (b). Since the
SDHRs are greater than 1 (for any t), the RRs are greater than 1 as well. However
the RRs, decrease over time and lie beyond the corresponding constant SDHRs.
The difference between the SDHR and the RR is also illustrated in the case of
non proportional SDH models. As an example, let us consider the SDH functions
reported in Figure 4, panel (c) for the covariate patterns x5, x6, x7, wherex5 is the
reference. SDHRs with the corresponding RRs are reported in Figure 4, panel (d);
RRs are lower than the corresponding SDHRs. At the beginning of the follow-up,
both SDHR and RR are less than 1, both functions become greater than 1 but there
is shift between the change times.
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Figure 4: Relationship between SDHR and RR. Proportional hazards for covariate patterns

x1(reference),x2,x3. (a): SDH functions. (b): SDHR functions and corresponding RR functions.

Non proportional hazards for covariates patterns x5(reference), x6 and x7. (c): SDH functions.

(d): SDHR functions and corresponding RR functions.
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3. APPLICATION EXAMPLES

3.1 DATA DESCRIPTION

3.1.1 A CLASSICAL ANIMAL CARCINOGENESIS EXPERIMENT:

CAUSES OF DEATH IN A RADIATION-EXPOSED MALE MICE

A group of 177 male mice were first submitted to a radiation dose of 300 rad
at an age of 5-6 weeks, then they were placed in two laboratory environments:
conventional (CE, 95 mice) and germ-free (GFE, 82 mice). The mice were
followed until death, and necroscopy was performed to ascertain the cause of
death. Complete data are available regarding the age to death (in days) and
the cause: 51 mice died from thymic lymphoma (TL), 53 from reticulum cell
sarcoma (RCS) and 73 from other causes (OC). Age to death is the time variable
considered. The laboratory environment is the considered covariate (xe: coded
as 0= CE and 1= GFE). A detailed data description is given by Hoel and Walburg
(1972). Analysis on SDHs was performed by Andersen et al. (2002) to compare
the regression model they proposed with that of Fine and Gray (1999). Models on
CSH were not discussed in the cited paper.

3.1.2 RANDOMIZED CLINICAL TRIAL ON BREAST CANCER

PATIENTS SUBMITTED TO RADICAL AND EXTENDED RADICAL

MASTECTOMY

A group of 716 patients with breast cancer, recruited at Istituto Nazionale per lo
Studio e la Cura dei Tumori di Milano, from January 1964 to January 1968, were
randomized for two surgical treatments: radical and extended radical mastectomy.
Patients included in the study were those with disease classified as M0 with T
stage T1, T2, T3a, and with nodal status N0, N1.

In the present analysis a 20-year follow-up (updated to June 1986) is
considered. With such a follow-up, 462 patients died. 376 deaths were classified
as due to breast cancer, 12 as due to primary tumor in other site and 74 as not
related to neoplastic causes. Previous analyses on the same data set (Valagussa et
al., 1978; Mezzanotte et al., 1987) were based on overall survival. Overlapping
survival curves were obtained for the two kinds of surgeries (Valagussa et al.,
1978).

Clinical variables were coded as follows. Treatment: 0= radical, 1= extended;
metastatic involvement of axillary lymph-nodes (xN ): 0= N-, 1= N+; menopausal
status (xM ): 0= pre-menopause 1= menopause; T stage by two indicator
variables: xT1 and xT2 , where 0, 0= T1, 1, 0= T2, 1, 1= T3a, respectively.
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3.2 MODELLING STRATEGY

In both examples we assumed to be interested in estimating the CCIs and to
perform a consistent inference. In addition, models on CSH were also considered
for the interpretation of the disease dynamics.

Fine and Gray’s software (cmprsk library, version for S-PLUS 2000, available
at http://bioww w.dfci.harvard.edu/~gray/), was used to obtain nonparametric
estimates of CCI and 1 CSS curves (for discrete covariate levels) and to fit
regression models on SDH and CSH.

Concerning SDH estimation, a status variable coded according to the different
causes of death and censoring was defined. In the first example the coding was:
1= TL, 2= RCS, 3= OC, and in the second example the coding was: 0= censored,
1= breast cancer, 2= non neoplastic, 3= other tumors.

Concerning CSH estimation, for each cause of death, a status variable coded
as 1 if the cause occurred, and 0 otherwise, was defined. CCI curves were
estimated by (22) and 1 CSS curves were estimated by the Kaplan-Meier method.
Differences between CCIs were tested by resorting to the regression models (24)
or (27) on the SDH, while the Cox model based on CSH was used for inference
on the 1 CSS curves.

To the above aim, the assumption of proportional hazards was evaluated by
examining plots of Schoenfeld type residuals (Schoenfeld, 1982), adding a locally
weighted regression smoothing to identify the shapes of possible time-dependent
effects. When lack of proportionality was hypothesized, interaction terms between
covariates and a function of time were included in the models. To account for
possible non linear effects, 3-knot restricted cubic splines for time (Heinzl et al.,
1996; Coradini et al., 2000) were adopted, resorting to the rcs function in S-PLUS
2000 Design library. When a time-dependent effect was modelled, the effect was
tested by a ’’global’’ Wald statistic on the regression coefficients of the linear and
nonlinear time components.

3.3 RESULTS

3.3.1 A CLASSICAL ANIMAL CARCINOGENESIS EXPERIMENT:

CAUSES OF DEATH IN RADIATION-EXPOSED MALE MICE

The distributions of age to death for the three causes of death (TL, RCS, OC), are
reported in Figure 5.

The nonparametric estimates of CCI and 1 CSS (according to the laboratory
environment) for TL mortality, are reported in Figure 6, panels (a), (b).

The two estimates are similar for the two laboratory environments. This can
be explained observing as RCS mortality (Figure 5, panels (c), (d)) acted at older
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age than TL mortality (Figure 5, panels (a), (b)), and age to OC mortality (Figure
5, panels (e), (f)) was partly overlapped to that for TL. As a consequence the
competing effect of RCS and OS on TL mortality was weak.

Regression models on SDH and CSH were used for inference on CCI and
1 CSS, respectively.

For the SDH, residual analysis suggested a non linear time-dependent effect
of laboratory environment (xe). Thus, the terms: (xe · t) and (xe · t;) (i.e. the
linear and non linear time-dependent effects) were included in the model. The
laboratory environment is a significant prognostic factor for TL mortality having
also a time-dependent effect (Table 1).
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Figure 5: Distribution of age to death for the three causes, by laboratory environment.
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Figure 6: Nonparametric estimates of TL mortality incidences by the laboratory environment.

(a): CCI. (b): 1-CSS.
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Table 1: Effect of laboratory environment on the three causes of death: results
of SDH regression models

Cause model terms £,
t

s.e.(£,)t X2 d.f. p
TL xe 291.95 219.58 1.77 1 0.18

(xe · t) -1.22 0.93 1.73 1 0.19

(xe · t
;) 4.71 2.54 3.46 1 0.06

(xe · t) + (xe · t;) - - 6.60 2 0.04

xe + (xe · t) + (xe · t;) - - 9.08 3 0.03

RCS xe -126.89 321.88 0.16 1 0.69

(xe · t) -0.12 0.57 0.05 1 0.83

(xe · t
;) 1.13 0.64 3.15 1 0.08

(xe · t) + (xe · t;) - - 7.76 2 0.02

xe + (xe · t) + (xe · t
;) - - 14.85 3 <0.01

OC xe 14.47 128.40 0.01 1 0.91

(xe · t) 0.45 0.34 2.12 1 0.15

(xe · t
;) 1.77 0.61 8.48 1 <0.01

(xe · t) + (xe · t;) - - 13.23 2 <0.01

xe + (xe · t+ (xe · t;) - - 16.85 3 <0.01

Table 2: Effect of laboratory environment on the three causes of death: results
of CSH regression models

Cause model terms £,
t

s.e.(£,)t X2 d.f. p
TL xe 292.20 223.40 1.71 1 0.19

(xe · t) -1.23 0.95 1.68 1 0.20

(xe · t
;) 4.44 2.66 2.78 1 0.10

(xe · t) + (xe · t
;) - - 4.07 2 0.13

xe + (xe · t) + (xe · t
;) - - 5.59 3 0.15

RCS xe -203.21 34.01 35.69 1 <0.001

OC xe -110.20 28.70 17.75 1 <0.001
t ×10P2

Legend of tables 1,2. estimates of the regression coefficient £,; standard error s.e. (£,); X2:

Wald statistic; d.f.: degrees of freedom; p: p-value; xe: effect of laboratory environment; (xe · t):
linear time-dependent effect; (xe · t

;): non linear time-dependent effect; (xe · t) + (xe · t
;):

global time dependent effect; xe+(xe · t) + (xe · t
;): global effect of laboratory environment.
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The shape of the estimated logSDHR is non monotone and non constant in
sign (Figure 7, panel (a)). A protective effect of the CE is observed only at ages to
death from about 250 to 350 days. Afterward, the greater was the age to death the
stronger is the prognostic effect of laboratory environment on the SDH. Inference
on CCI curves cannot be directly derived from that on the regression coefficients
since the presence of the non monotone SDH function.
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Figure 7: SDH regression model on TL mortality: estimated time functions. (a): LogSDHR of

GFE versus CE. (b): CCI by laboratory environment.(c): CCI Relative risk (RR) of GFE versus CE.

The model estimated CCI curves (Figure 7, panel (b)) show as the mice in GFE
had greater risk of TL death than the mice in CE at all ages. As a consequence
the corresponding RR curve (Figure 7, panel (c)), is always greater than 1. The
prognostic impact of the covariate on the RR decreases until about 400 days, (i.e.
the point where the CCI curves are the closest), and afterward it increases reaching
about 1.50 at 800 days. Since at the beginning of the period of observation the
number of deaths was low in both groups (see Figure 5, panels (a), (b)), the CCIs
are close to 0 thus the RR does not provide reliable information. Starting from
about 500 days, the CCI curve of the CE reaches its maximum (i.e. SDH is about
0) whereas the CCI curve for the GFE kept on increasing (i.e. SDH is greater than
0). Let us observe as this behavior justifies the high values reached by the SDHR
towards the end of the period of observation. In this period all the possible deaths
has already occurred and the SDHR does not provide reliable information.

Concerning the CSH, residuals analysis again suggested a possible non linear
time dependent effect of the laboratory environment, and the terms (xe · t) and
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(xe · t
;) were included in the model. The time-dependent effect does not result

statistically significant as well as the prognostic effect of laboratory environment
(Table 2). It is worth of note that although the competing effect of other causes of
death was expected to be weak (Figure 5), test results are quite different.

The nonparametric estimates of CCI and 1 CSS according to the laboratory
environment for RCS mortality are reported in Figure 8, panels (a), (b).
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Figure 8: Nonparametric estimates of RCS mortality incidence curves by laboratory

environment. (a): CCI. (b): 1-CSS.

A relevant difference is observed between CCI and 1 CSS curves. This can
be explained as TL mortality (Figure 5, panels (a), (b)) and partly OC mortality
(Figure 5, panels (e), (f)) acted at earlier ages than RCS mortality (Figure 5, panels
(c), (d)), so the competing effect on RCS mortality was strong.

Concerning the SDH model for RCS mortality, the residual analysis suggested
a possible non linear time dependent effect of the laboratory environment, and
the terms (xe · t) and (xe · t;) were included in the model. The laboratory
environment is a significant prognostic factor having also a time dependent effect
(Table 1).

The shape of the logSDHR is non monotone and non constant in sign (see
Figure 9, panel (a)); a protective effect of the GFE is present only until about 700
days, and the prognostic effect of the laboratory environment is greater the older
was the age to death.
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Figure 9: SDH regression model on RCS mortality: estimated time functions. (a): logSDHR of

GFE versus CE. (b): CCI by laboratory environment. (c) CCI Relative risk (RR) of GFE versus CE.

The same considerations reported for TL on the behavior towards the end of the
period of observation applies also for RCS, and inference on CCI curves cannot
be directly derived from that on the regression coefficients.

The model estimated CCI curves are reported in Figure 9, panel (b). A
protective effect of GFE is shown at all ages to death. The corresponding RR
curve (Figure 9, panel (c)), is always less than 1 and the strongest prognostic
impact of laboratory environment is at about 600 days.

Concerning the CSH model for RCS mortality, the residual analysis did not
suggest a possible time-dependent effect of the laboratory environment. Thus, the
proportional hazard model was used. The laboratory environment is a significant
prognostic factor (see Table 2). The constant CSH ratio is 0.13, showing a
protective effect of the GFE. This behavior is very different from that obtained
for SDHR.

The analysis for OC mortality shows similar patterns of estimated CCIs and
1-CSSs and similar model results to those discussed for RCS mortality.

This example application shows as the nonparametric estimate of CCI is always
less than the corresponding 1 CSS curve, as expected from the inequality (17) on
the corresponding population functions. Such a difference is greater the stronger is
the competing effect of the other causes of death. The results of regression models
based on SDH and CSH are substantially different. In particular, the environment
has a significant prognostic effect on SDH for TL mortality (X2 = 9.08, p =
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0.03), but not on CSH (X2 = 5.59, p = 0.15). Concerning the other two causes
of death, SDH shows a time dependent effect that is not evidenced for CSH. The
pattern of the prognostic impact of the environment on the measure of interest
(RR) is different from the corresponding one on SDH.

3.3.2 RANDOMIZED CLINICAL TRIAL ON BREAST CANCER

PATIENTS SUBMITTED TO RADICAL AND EXTENDED RADICAL

MASTECTOMY

The estimated CCI and 1 CSS curves for breast cancer mortality according
to surgical treatment are very similar, and no relevant differences are observed
between radical and extended radical mastectomy (Figure 10, panels (a), (b)).
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Figure 10: Nonparametric estimates of breast cancer mortality incidence curves by surgery. (a):

CCI. (b): 1-CSS.

Residual analysis did not suggest the presence of time dependent effects, so
proportional hazard models were used for SDH and CSH. The estimates of two
models are very similar and the difference between surgical treatments are not
statistically significant (p = 0.40 for SDH and p = 0.44 for CSH). This is
coherent with previous analyses reported on the trial results (Valagussa et al., 1978;
Mezzanotte et al., 1987). In the present analysis, further investigations on the
effect of surgery were not carried out.

Concerning the other covariates, the estimated of CCI and 1 CSS curves for
breast cancer mortality, according to the same covariate levels, are very similar
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(Figure 11). This can be explained by the weak competing effect of mortality due
to other causes than breast cancer, being breast cancer mortality the event with the
highest incidence.
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Figure 11: Nonparametric estimates of breast cancer mortality incidence curves by covariate

levels. (a): CCI by metastatic involvement of axillary lymph-node (N). (b): 1-CSS by N. (c): CCI

by T stage. (d): 1-CSS by T stage. (e): CCI by menopausal status. (f): 1-CSS by menopausal status.

Concerning the metastatic involvement of axillary lymph nodes, residual
analysis did not suggest a time dependent effect both on SDH and CSH, thus
proportional hazard models including the term xN were used. This covariate is
a significant prognostic factor and estimated regression coefficients for SDH and
CSH models are very similar, (Tables 3, 4). Considering N- as reference level, the
estimated SDHR is 4.03, the model estimated RR for CCI are 3.61, 3.31, 2.83,
and 2.55 at 3, 5, 10 and 20 years, respectively.

Concerning the T stage, the residual analysis suggested a possible non linear
time dependent effect on both SDH and CSH. Non proportional hazard models
were used including the following terms: xT1 , (xT1 · t), (xT1 · t

;), xT2 , (xT2 · t),
(xT2 · t

;), where (xT1 · t),(xT1 · t
;), (xT2 · t),(xT2 · t

;) are the variables for linear
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and non linear time-dependent effects of xT1 and xT2 , respectively. The T stage is
a significant prognostic factor having also a significant time dependent effect and
the estimated regression coefficients for SDH and CSH models are very similar
(Tables 3, 4). For xT1 , the shape of the logSDHR is non monotone and constant
in sign. It reaches its minimum at about 120 months. For xT2 , the shape of the
logSDHR is non monotone and not constant in sign. It is below zero from 98 and
166 months, and reaches its minimum at about 128 months.

The SDHRs for T2 versus T1 are 3.86, 2.00, 1.03 and 3.43; for T3a versus T2
are 1.65, 1.28, 0.95 and 1.23 at 3, 5, 10 and 20 years respectively. The greatest
prognostic impact on SDH is at early follow-up. The same consideration applies
for the RR. In fact, RR for T2 versus T1 are 5.18, 1.97, 1.53 and 1.23; for T3a
versus T2 are 1.77, 1.06, 1.47 and 1.61 at 3, 5, 10 and 20 years respectively.

Concerning the menopausal status, the residual analysis suggested a possible
non linear time dependent effect on both SDH and CSH. Non proportional hazard
models were used including the following terms: xM , (xM · t), (xM · t;), where
(xM · t), (xM · t;) are the variables for linear and non linear time-dependent
effects of xM . Menopausal status is a significant prognostic factor having also a
significant non linear time dependent effect; the estimated regression coefficients
for SDH and CSH models are very similar (Tables 3, 4). Considering pre-
menopause as reference category, the shape of the logSDHR is non monotone
and not constant in sign. It is below zero from 46 and 206 months, and reaches
its minimum at about 112 months. The SDHRs are 1.14, 0.84, 0.64 and 1.24, at
3, 5, 10 and 20 years respectively. The RRs for CCI are not greater than 1 for
whole follow-up, in fact they are 1.33, 1.15, 0.95 and 0.94 at 3, 5, 10 and 20 years
respectively.

The above results are substantially similar to those obtained by multiple
regression models on SDH and CSH including all variables. This example shows
as in presence of a weak competing effect of other causes of death on the breast
cancer mortality, models based on SDH and CSH could provide similar results.
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Table 3: Effect of covariates (X) on breast cancer mortality: results of SDH
regression model on each covariate.

X model terms £, s.e.(£,) X2 d.f. p
N xN 1.39 0.12 138.58 1 <0.0001

T xT1 2.47 0.78 10.09 1 <0.01

xT1 · t -0.03 0.01 6.80 1 <0.01

(xT1 · t
;) 0.04 0.02 6.28 1 0.01

xT2 0.924 0.33 7.97 1 <0.01

(xT2 · t) -0.012 0.01 2.48 1 0.12

(xT2 · t
;) 0.014 0.01 1.11 1 0.29

(xT1 · t) + (xT1 · t
;) - - 11.11 4 0.03

+(xT2 · t) + (xT2 · t
;)

(xT1 · t) + (xT2 · t) - - 10.08 2 0.01

(xT1 · t
;) + (xT2 · t

;) - - 8.03 2 0.02

M xM 0.64 0.27 5.85 1 0.02

(xM · t) -0.01 0.01 7.28 1 0.01

(xM · t;) 0.020 0.01 4.98 1 0.03

(xM · t) + (xM · t;) - - 7.91 2 0.02

Legend: N: metastatic axillary involvment; T: T stage; M: menopausal status; £,: estimate

of the regression coefficient; s.e.(£,) estimate of standard error; X2: Wald statistic; d.f.: degrees of

freedom; p: p-value; : xN ,xT1 ,xT2 ,xM covariate effects; (x
•
· t): linear time-dependent effect

; (x
•
· t;): non linear time-dependent effect.; (x

•
· t) + (x

•
· t;) global time dependent effect.
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Table 4: Effect of covariates (X) on breast cancer mortality: results of CSH
regression model on each covariate.

X model terms £, s.e.(£,) X2 d.f. p
N xN 1.40 0.12 138.72 1 <0.0001

T xT1 2.45 0.77 10.03 1 <0.01

(xT1 · t) -0.03 0.01 6.57 1 0.01

(xT1 · t
;) 0.04 0.02 5.97 1 0.01

xT2 0.93 0.33 8.15 1 <0.01

(xT2 · t) -0.01 0.01 2.73 1 0.10

(xT2 · t
;) 0.01 0.01 1.25 1 0.26

(xT1 · t) + (xT1 · t
;)+ - - 11.17 4 0.02

(xT2 · t) + (xT2 · t
;)

(xT1 · t) + (xT2 · t)+ - - 10.10 2 <0.01

(xT1 · t
;) + (xT2 · t

;) - - 7.88 2 0.02

M xM 0.65 0.27 5.98 1 0.01

(xM · t) -0.01 0.01 7.38 1 <0.01

(xM · t;) 0.02 0.01 5.96 1 0.01

(xM · t) + (xM · t;) 7.52 2 0.02

Legend: N: metastatic axillary involvment; T: T stage; M: menopausal status; £,: estimate

of the regression coefficient; s.e.(£,) estimate of standard error; X2: Wald statistic; d.f.: degrees of

freedom; p: p-value; : xN ,xT1 ,xT2 ,xM covariate effects; (x
•
· t): linear time-dependent effect

; (x
•
· t;): non linear time-dependent effect.; (x

•
· t) + (x

•
· t;) global time dependent effect.

4. DISCUSSION

The presence of multiple events is usual during the course of a disease. As events
have a different clinical interpretations, a common approach is their investigation
(separately or jointly) to estimate specific occurrence probabilities or to detect
specific prognostic factors. Nowadays, the classical approach is the Cox model
on CSH, regardless of the study aims and the clinical interest. CSH is the measure
of concern in several explorative studies, being the interest focused on disease
dynamics, but in other clinical situations, such as for supporting clinical decision
making, CCI is more useful than CSH. Inference performed on CSH regression
models is not consistent with the corresponding one on SDH (Fine and Gray,
1999). Therefore, suitable regression models for CCI have been developed (Fine
and Gray, 1999; Fine, 1999; Fine, 2001; Andersen et al., 2002). Several clinical
studies concerning competing risks have been published, but it is worth of note as
finding applications of CCI models using a database such as PubMed is a difficult
task since these statistical methods are generally not mentioned neither in abstracts
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nor in Key-words. As far as we are concerned, the application of Fine and Gray’s
model is still limited (some papers have been available since 2002: Rocha et al.,
2002; Wallgren et al., 2003 among others). Possible reasons could be that the
authors in their original paper resorted to an efficient notation based on counting
processes in order to show the properties of the proposed model. However, this
notation is difficult to understand for most applied statisticians.

In clinical situations, where the competing action of the events which are not of
interest is weak, CSH and SDH based models could provide similar results. This
may have discouraged to mention SDH models preferring the well-known based
on CSH. On the other hand, CSH models are more ’’attractive’’ than SDH models
as CSH is a clinically interpretable measure which can be directly obtained from
estimated regression coefficients. Nevertheless, consistent inference procedures
on CCI are needed.

Aiming at stimulating potential users to adopt SDH regression models, the
present note resorts to a standard notation for competing risks to emphasize
the difference between CSH and SDH models. In order to provide insight on
the prognostic effect of covariates on CCI, relationships between the pattern of
logSDHRs and the corresponding CCI was discussed and the relative risk is
proposed as a measure of prognostic impact. It had been shown as in presence
of time-dependent effects the SDHR pattern provides information on CCI pattern
only in the case of SDHR grater than 1 (less than 1) for the whole considered time.
Otherwise the ordering of the estimated CCI curves cannot be inferred from the
shape of the logSDHR functions since CCI curves might be crossed. In the case
of complete data (absence of censoring), standard software for Kaplan-Meier, log-
rank test and Cox model can be used to make inference on CCI and SDH simply
by considering as exposed at risk for the whole follow-up also the patients who
experienced events competing with the event of interest. This strategy cannot be
generally adopted in the presence of censoring; a dedicated software for competing
risk is needed. For the score function proposed by Fine and Gray (1999), censoring
is assumed to be non informative. However, causes of loss to follow-up that might
be related to the event of interest, can originate informative censoring. These
causes should be considered and treated as competing events only if they can
be considered as ’’treatment failure’’, since competing events have a role in the
score function different from that of censoring. In this context, Fine and Gray
(1999) stated that it is possible to modify weight functions to make allowance for
informative censoring.

The application of the CSH and SDH models on literature data regarding
carcinogenesis experiment on mice and clinical data regarding breast cancer,
showed how results do not necessarily agree. In the mice data set, the proportional
hazards assumption was tenable in CSH models on RCS and OC causes of
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death, whereas for SDH models, time-dependent effects for the environment were
present. These results showed that proportional effects on CSH do not necessarily
imply proportionality on SDH. Moreover, in presence of time dependent effects,
the pattern of the prognostic impact of environment on SDH is different to the
corresponding one on relative risks, confirming a difficult interpretability of
model results. This example was also analyzed by Andersen et al. (2002) to
compare Fine and Gray’s model with the ’’pseudo observation model’’ they have
proposed. The authors found that Fine and Gray’s model poorly fitted OC deaths,
but issues on modelling techniques were not addressed and, in particular, time-
dependent effects were not accounted for.

Breast cancer mortality is the typical end-point considered to evaluate
prognostic factors. Metastatic axillary lymph-node involvement and T stage
are well known clinical characteristics related to disease recurrence and, as a
consequence, to breast cancer mortality. For these covariates, results of SDH and
CSH models are very similar. It is expected that times to death from breast cancer
of patients considered to be at high risk tend to be shorter than times to death for
other causes, so the competing effect of these latter on deaths for breast cancer
tend to be weak. This is a possible explanation for the similar estimates of CSHs
and SDHs.

Models on CSH are indeed useful in a biological framework where the
dynamics of competing events is of interest. However, in a clinical framework,
CCI may be more interesting, thus justifying the need for suitable regression
models with a consistent inference procedure.
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RISCHI COMPETITIVI: IL MODELLAMENTO DELLE

FUNZIONI DI INCIDENZA CRUDA CUMULATIVA

Riassunto

Il decorso clinico di una malattia è usualmente caratterizzato dalla possibile
occorrenza di diversi eventi ed ognuno di essi ha un ruolo specifico per la
valutazione delle strategie terapeutiche. L’interesse è focalizzato sull’evento
che si verifica per primo in quanto è tipicamente considerato come indicatore
di ’’fallimento della terapia’’ o ’’risposta al trattamento’’. La probabilità
dell’occorrenza di un evento specifico in presenza di altri eventi (incidenza cruda
cumulativa) è la misura più indicata per la valutazione dei trattamenti. Il
modello di regressione semiparamentrico di Cox sui rischi istantanei specifici
per causa è l’approccio usulamente adottato per tenere conto della presenza
di covariate clinico/biologiche. Dovrebbe tuttavia essere considerato che
l’effetto di una covariata sul rischio istantaneo specifico per causa potrebbe
essere sostanzialmente diverso da quello sull’incidenza cruda cumulativa.
Per modellare l’effetto delle covariate su tale quantità, Fine e Gray (1999)
hanno proposto un modello di regressione basato sui rischi istantanei di
’’sottodistribuzione’’. A nostra conoscenza, tali modelli di regressione non sono
abitualmente applicati in letteratura medica. La presente nota ha come obiettivo
di promuovere l’utilizzo della tecnica di modellamento sull’incidenza cruda
cumulativa; si è quindi fatto ricorso ad una notazione ’’standard’’ per i rischi
competitivi per sottolineare le differenze tra il modello di Cox e quello di Fine
e Gray. Inoltre, l’applicazione dei due modelli su una casistica di letteratura
riguardante un esperimento di carcinogenesi effettuato su topi e su una casistica
storica riguardante 716 pazienti affette da tumore alla mammella ha permesso di
evidenziare come i risultati su questi due modelli non sempre concordino.


