

THE GEOMETRIC INTERPRETATION OF THE CORRELATION RATIO*

Renato Leoni

Dipartimento Statistico dell'Università di Firenze - Firenze.

It is well known that the simple linear correlation coefficient r admits two interesting geometrical interpretations as a cosine of an angle. The purpose of this paper is to give a geometric interpretation of the correlation ratio h along lines parallel to those now mentioned for r.

1.

Given the centered values $\tilde{\mathbf{y}}_i, \tilde{\mathbf{x}}_i$ (i=1,2,...,n) assumed by the quantitative characteristics (variables) Y, X on n objects (individuals), it is well known that several geometric interpretations of the simple linear correlation coefficient r are possible. One of these consists in regarding $\tilde{\mathbf{y}}_i, \tilde{\mathbf{x}}_i$ (i=1,2,...,n) as vectors, say $\tilde{\mathbf{y}}, \tilde{\mathbf{x}}$, in Eⁿ and in looking at the cosine of the angle α they form. Alternatively, considering in E² the concentration ellipse

$$z' R^{-1}z = 1$$
, $R = \begin{bmatrix} 1 & r \\ r & 1 \end{bmatrix}$, $-1 < r < +1$

it can be shown that

$$r = \begin{cases} cos \Big(T_2 T_1 T_4\Big) & \text{if} \quad r \geq 0 \\ cos \Big(T_1 T_2 T_3\Big) & \text{if} \quad r \leq 0 \end{cases}$$

^{*} Based on a research partially funded by CNR.

Fig. 1, 2.

where T_1 , T_3 and T_2 , T_4 are the intersections of the ellipse, respectively, with the major and minor axis (cf. Figures 1,2)¹.

But what about the correlation ratio η ? The purpose of this paper is to give a geometric interpretation of η along lines parallel to those mentioned above for r.

2.

Let us suppose that n objects are classified according to q values $y_1, \ldots, y_k, \ldots, y_q$ of a variable Y and to p attributes a_1, \ldots, a_p , of a qualitative characteristic A. The results are usually summarized as in Table I, in which n_{hk} (h=1,2,...,p; k=1,2,...,q) denotes the number of objects taking the attribute a_p of A and the value y_k of Y and

$$n_h. = \sum_{k=1}^q n_{hk} > 0 \ , \ n_{\cdot k} = \sum_{h=1}^p n_{hk} > 0 \ , \ \sum_{h=1}^p n_h. = \sum_{k=1}^q n_{\cdot k} = n.$$

Setting

$$\overline{y}_h = \frac{\displaystyle\sum_{k=1}^q y_k n_{hk}}{n_h.} \ , \ \overline{y} = \frac{\displaystyle\sum_{k=1}^q y_k n_{\cdot_k}}{n}$$

In these interpretations it is assumed that E^n and E^2 are Euclidean spaces with scalar products represented – with respect to the natural bases of E^n and E^2 – by unit matrices of appropriate order.

Т	ab	. 1	

Α			Y			Totals
	y ₁		y_k		y _q	
$a_{_1}$	n ₁₁		n_{1k}		n _{1q}	n ₁ .
•	•	• • • •		•••		
•	•	• • •	•	•••		•
	•			• • •		
a_{h}	n _{h1}	•••	n _{hk}		n_{hq}	n _h .
		• • • •	•	•••	•	•
•		• • • •	•			•
•	•			•••		•
$\mathbf{a}_{_{\mathrm{p}}}$	n _{p1}		n_{pk}		n_{pq}	n _p .
Totals	n. ₁	•••	n. _k	•••	n. _q	'n

the correlation ratio h is defined by the expression

$$\eta = \left(\frac{\sum\limits_{h=1}^{p} \left(\overline{y}_{h} - \overline{y}\right)^{2} n_{h}}{\sum\limits_{k=1}^{q} \left(y_{k} - \overline{y}\right)^{2} n_{\cdot k}}\right)^{1/2}$$

and interpreted as the square root of the ratio between the "interclass" variance and the total variance.

3.

In order to obtain a geometric interpretation of η , let us consider Table II where, besides Y, we have the new variables $X_1, \dots, X_p, X_p, X_h$ (h=1,2,...,p) denotes the variable "number of times with which the attribute a_h of A is present in an object", and hence

$$\begin{aligned} &x_{ih} = \text{value taken by } X_h \text{ on the ith (i=1,2,...,n) object} \\ &= \begin{cases} 1 & \text{if the ith object takes the attribute } a_h & \text{of A} \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

In turn,

y_i = value taken by Y on the ith object.

D.	

Objects	X ₁	 X _h		X _p	Υ
1	X ₁₁	 X _{1h}		X _{1p}	У ₁
				•	
			•••		•
i	\mathbf{X}_{i1}	 \mathbf{X}_{ih}		x_ip	\mathbf{y}_{i}
					•
n	X _{n1}	 X_{nh}		X_{np}	\mathbf{y}_{n}
Totals	n ₁ .	 n _h .		n _p .	n \overline{y}

Of course, since there is a one–to–one correspondence between Table I and Table II, their informative contents are the same.

Moreover, writing

$$\boldsymbol{X} = \begin{bmatrix} x_{11} & \dots & x_{1h} & \dots & x_{1p} \\ \vdots & \dots & \vdots & \dots & \vdots \\ x_{i1} & \dots & x_{ih} & \dots & x_{ip} \\ \vdots & \dots & \vdots & \dots & \vdots \\ x_{n1} & \dots & x_{nh} & \dots & x_{np} \end{bmatrix}, \quad \boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_i \\ \vdots \\ y_n \end{bmatrix}$$

we have

$$\mathbf{u'}\,\mathbf{X} = \left[n_1...n_{h.}...n_{p.}\right]\;,\;\;\mathbf{u'}\,\mathbf{y} = n\overline{\mathbf{y}}$$
 where $\mathbf{u'} = [1...1...1].$

Therefore, the centered matrix and vector, corresponding to **X** and **y**, are

$$\tilde{\boldsymbol{X}} = \boldsymbol{X} - \boldsymbol{u} \frac{1}{n} \boldsymbol{u}^{\scriptscriptstyle \mathsf{T}} \boldsymbol{X} = \boldsymbol{X} - \boldsymbol{u} \left[\frac{n_1}{n} ... \frac{n_h}{n} ... \frac{n_p}{n} \right] \;, \; \; \tilde{\boldsymbol{y}} = \boldsymbol{y} - \boldsymbol{u} \overline{\boldsymbol{y}}.$$

Notice that – since we have assumed $n_h > 0$ (h=1,2,...,p) – $r(\mathbf{X})=p \le n$ and $r(\tilde{\mathbf{X}})=p-1$; thus, $\tilde{\mathbf{X}}$ is not of full column rank.

4.

With these premises, we are in a position to give a geometric interpretation of $\boldsymbol{\eta}.$ Firstly, let

 $S(\mathbf{u})$: the vector space spanned by the vector \mathbf{u} ;

 $S(\boldsymbol{X})$: the vector space spanned by the column vectors of \boldsymbol{X} ;

 $S(\tilde{X})$: the vector space spanned by the column vectors of \tilde{X} ;

and

 $P(\mathbf{u})$: the orthogonal projection matrix onto $S(\mathbf{u})$;

P(X): the orthogonal projection matrix onto S(X);

 $P(\tilde{X})$: the orthogonal projection matrix onto $S(\tilde{X})$.

Then, since $S(\mathbf{u})$ and $S(\tilde{\mathbf{X}})$ are orthogonal complements in $S(\mathbf{X})^{(2)}$, $\forall \mathbf{x} \in E^n$ we have

$$\mathbf{P}_{(\mathbf{X})}\mathbf{X} = \mathbf{P}_{(\mathbf{u})}\mathbf{X} + \mathbf{P}_{(\tilde{\mathbf{X}})}\mathbf{X}$$
 and hence

$$\mathbf{P}_{(\tilde{\mathbf{X}})} = \mathbf{P}_{(\mathbf{X})} - \mathbf{P}_{(\mathbf{u})} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' - \mathbf{u}(\mathbf{u}'\mathbf{u})^{-1}\mathbf{u}'.$$

Therefore, the orthogonal projection $\hat{\tilde{\mathbf{y}}}$ of $\tilde{\mathbf{y}}$ onto $S(\tilde{\mathbf{X}})$ is given by

Therefore, the orthogonal projection
$$\hat{\tilde{\mathbf{y}}}$$
 of $\tilde{\mathbf{y}}$ or $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ and $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$ is $\tilde{\mathbf{y}}$ in $\tilde{\mathbf{y}}$

Now, denoting by α the angle between the vectors $\tilde{\mathbf{y}}$ and $\hat{\tilde{\mathbf{y}}}$, it is very easy to show that $\cos^2\alpha$ is just η^2 .

In fact, since $(X'X = \text{diag} [n_1 \dots n_n])$

$$\begin{split} \hat{\tilde{\boldsymbol{y}}}^{\boldsymbol{\cdot}}\hat{\tilde{\boldsymbol{y}}} = & \left[\overline{\boldsymbol{y}}_1 - \overline{\boldsymbol{y}} \ldots \overline{\boldsymbol{y}}_h - \overline{\boldsymbol{y}} \ldots \overline{\boldsymbol{y}}_p - \overline{\boldsymbol{y}}\right] \boldsymbol{X}^{\boldsymbol{\cdot}} \boldsymbol{X} \begin{bmatrix} \overline{\boldsymbol{y}}_1 - \overline{\boldsymbol{y}} \\ \vdots \\ \overline{\boldsymbol{y}}_h - \overline{\boldsymbol{y}} \end{bmatrix} = \sum_{h=1}^p & \left(\overline{\boldsymbol{y}}_h - \overline{\boldsymbol{y}}\right)^2 \boldsymbol{n}_h. \end{split}$$

(i)
$$X = \tilde{X} + u \frac{1}{n} u' X \Rightarrow Xb = \tilde{X}b + u ([n_1...n_{h_1}...n_{p_n}]b)$$

(ii) a**u'X b=**0:

then,
$$S(X) = S(u) \oplus S(\tilde{X})$$
 and $S(u) \perp S(\tilde{X})$.

Actually, for $\forall a \in R$ and $\forall b \in R^p$, we have

and

$$\tilde{\mathbf{y}}'\tilde{\mathbf{y}} = (y - u\overline{\mathbf{y}})'(y - u\overline{\mathbf{y}}) = \mathbf{y}'\mathbf{y} - \mathbf{u}'\mathbf{n}\overline{\mathbf{y}}^2 = \sum_{k=1}^{q} (y_k - \overline{\mathbf{y}})^2 \mathbf{n}_{k}$$

we have(3)

$$\cos^2\alpha = \frac{\hat{\tilde{\boldsymbol{y}}}'\,\hat{\tilde{\boldsymbol{y}}}}{\tilde{\boldsymbol{v}}'\,\tilde{\boldsymbol{v}}} = \eta^2.$$

5.

Another geometric interpretation of $\boldsymbol{\eta}$ is easily obtained by considering in E^2 the ellipse

$$\boldsymbol{z}'\boldsymbol{N}^{-1}\boldsymbol{z}=1\ ,\ \boldsymbol{N}=\begin{bmatrix}1&\eta\\\eta&1\end{bmatrix}\ ,\ 0\leq\eta<+1.$$

Denoting by d and D the lengths of the minor and major axes of the ellipse (cf. Figure 1), since

$$d = 2\sqrt{1-\eta}$$
 , $D = 2\sqrt{1+\eta}$

we have

$$\eta = \frac{D^2 - d^2}{D^2 + d^2} = \frac{1 - \frac{d^2}{D^2}}{1 + \frac{d^2}{D^2}} = \frac{1 - t^2}{1 + t^2}.$$

But $t = d/D = tan (T_2T_1T_4/2)$; thus,

$$\eta = \cos(\mathsf{T_2T_1T_4}).$$

Of course, if the angle $T_2T_1T_4$ is rectangular then the correlation ratio is 0. In turn, narrow ellipses correspond to angles close to 0 and, therefore, to correlation ratios close to +1.

Notice that this is equivalent to the squared multiple linear correlation coefficient between Y and the set of variables $X_1, ..., X_p, ..., X_p$.

REFERENCES

- Châtillon G.: The Balloon Rules for a Rough Estimate of the Correlation Coefficient. The American Statistician, pp. 58–60; 1984.
- Châtillon G.: Reply. Ther American Statistician, pp. 330-331; 1984.
- Gypen L.M.J.: Comment on Rogers and Nicewander. The American Statistician, pp. 291, 1988.
- Marks E.: A note on the Geometric Interpretation of the Correlation Coefficient. Journal of Educational Statistics, pp. 233–237; 1982.
- Ozer D.J.: Correlation and the Coefficient of Determination. Psychological Bulletin, pp. 307–315; 1985.
- Rodgers J.L., Nicewander W.A.: *Thirteen Ways to Look at the Correlation Coefficient*. The American, Statistician, pp. 59–66; 1988.
- Rodgers J.L.: Reply. The American Statistician, p. 291, 1988.
- Schilling M.F.: Some Remarks on Quick Estimation of the Correlation Coefficient. The American Statistician, p. 330, 1984.
- Thöni H.: Comment on Rogers and Nicewander. The American Statistician, p. 290, 1988.

SUMMARY

È ben noto che il coefficiente di correlazione lineare semplice r ammette due interessanti interpretazioni geometriche come coseno di un angolo. Lo scopo di questa nota è quello di mostrare la possibilità di interpretare in termini analoghi il rapporto di correlazione η.