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SUMMARY

An introduction is made to statistical problems presented by the recent use of new
marker technology in the mapping of genes affecting quantitative traits. The problems
include estimation and inference in complex genetic models with missing or incomplete
genotypic data. The key to the problems is to consider all candidate complete genotypes,
assign weights to them and do a weighted linear regression of the trait on the complete
genotype using a (Monte Carlo) EM algorithm for parameter estimation.
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1. INTRODUCTION

Many, if not most, traits of interest to plant, animal and human geneticists are
controlled by genes of which the inheritance can hardly be assessed (quantitative
trait loci or QTLs). Recently, new biotechnological tools have become available by
the advent of molecular markers, which heralds a new era for studying the genetics
of complex traits. In only a few years time it has had a major impact on fundamental
plant and animal genetics and on human medical genetics (Tanksley, 1993; Lander
and Schork, 1994). Powerful and accurate biometrical methods are needed, so as
to make possible the efficient dissection of complex traits into individual gene
effects. Not surprisingly, this area is gaining fast growing attention of biometricians
(Jansen, 1994). In this paper we make a survey of some of the challenging problems
presented to biometricians. At least a basic knowledge of genetics is essential for
understanding of our paper. For readers unfamiliar with this area we first describe
the main features of the genetic mechanisms involved.
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2. SOME BASICS OF MOLECULAR AND QUANTITATIVE GENETICS

(ienes are distributed along several linear chromosomes. Diploid organisms
like humans, animals and many plant species have two sets of chromosomes, one
setfrom each parent. The members of a pair of chromosomes are called homologous
chromosomes. Gametes (egg and sperm cells) receive only one set of chromosomes,
which conserves the number of chromosomes from generation to generation. In
sexual reproduction genetic material is recombined in two ways. Firstly, maternally
and paternally derived homologous chromosomes physically exchange chromosome
parts by symmetrical breakage and crosswise rejoining (crossovers; see Fig. 1).
Secondly, gametes randomly receive one chromosome from each pair of
chromosomes. The maternal (white) and paternal (black) forms of a gene are termed
alleles. The recombination frequency () between two genes is not linearly related
to the distance between those genes. As distance between genes increases, the
incidence of multiple crossovers causes the observed recombination frequency to
be an underestimate of the crossover frequency and hence of the true genetic “map
distance” m (in Morgan units). It is often assumed that the number of crossovers
between two genes follows a Poisson distribution with expectation m. Therefore,
the recombination frequency can be calculated as the sum of probabilities of odd
crossovers, which is 7 = 0.5(1-e72"); note that 1 centiMorgan ~1% recombination.
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Fig. 1: Example of how the genetic material of two homologous parental chromosomes may be
reshuffled by the crossover mechanism when gametes (egg and sperm cells) are formed.
Gametes 1 and 2 are non-recombinant; gametes 3—6 show single or double recombination;
recombination between the target and marker gene did not occur.

For quantitative traits we know nothing about how many genes are involved,
where the genes are located and what effects the genes have. The recent development
of molecular markers provides geneticists with new technology that can be used for
detecting and mapping genes. A molecular marker may be considered as a gene of
which the allelic constitution (=genotype) can be observed with biochemical
methods. In Fig. 1 the genotype of the marker gene (white or black per gamete) can
be observed, but not that of the target gene. Since the two genes are at nearby map
locations, most gametes will not be recombinant for the two genes (proportion
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1-r): white is associated with white and black is associated with black. Therefore,
in a progeny an indirect observation of the genotype at the target gene can be
obtained from marker information. This works well only if any target gene is
located close to amarker, i.e. ideally the set of markers should cover all chromosomes.
Now, genetic marker maps exist for many plant and animal species. For example
Fig. 2 shows a marker map of Arabidopsis. A subset of these markers was used in
the application presented in Box 1. A marker map of lily is not yet available; an
application with a small number of widely spaced markers is shown in Box 2.
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Fig. 2: Amarker map of the five chromosomes of Arabidopsis. Map distances (in centiMorgans)
areindicated on the left hand side of each chromosome, marker names on the right hand
side.
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Ifatrait is encoded by many genes, the distribution of trait values may appear
continuous because numerous genotypes exist in the population. If the trait is
affected by a few genes, it may still show continuous variation when environmental
factors influence the trait. In most situations both genetic and environmental factors
are active. Boxes 1 and 2 present histograms of the trait values in experiments
concerning germination in Arabidopsis and resistance to Fusarium in lily,
respectively. In the first application many genes affect the trait. In the latter
probably only three genes affect the trait, but the presence of multiple candidate
alleles at each locus increases the number of genotypes. In both experiments the
variation is largely attributable to genetic factors.

3. MAPPING QUANTITATIVE TRAIT GENES

The easiest approach to mapping quantitative trait genes is to consider
markers one by one. Differences between the genotypes of a marker with regard to
a trait may indicate the presence of one or more linked genes (see Box 2 for an
example). Simple linear regression (or a non—parametric method) can be used for
testing. This one—by—one approach is simple and has been used in many applications.
However, using more markers simultaneously in a multiple regression is more
efficient.

Unfortunately, the use of more markers simultaneously is usually hampered
by missing marker data. In practice frequently about 5% of the observations on
markers fail. In addition to fortuitously missing data, other types of ‘missing
information’ may occur, e.g. when the marker technique provides only partial
information about the allelic constitution of markers (see Box 2 for an example).
One way to proceed is to eliminate individuals with missing data, but this could
mean that only a very limited set of data remains.

Another way to overcome the problem of missing information is obtained by
noting that the missing genotype of a marker belongs to a limited set of candidate
allelic states, e.g. double white, white plus black or double black. An observation
at a flanking marker, e.g. double white, may help to reveal information: it is likely
that both markers are double white because white is associated with white and black
with black. If the distance between the markers is not very small, we should also
take into account the occurrence of recombination, e.g. the observed genotype is
double white at one marker whereas the (unobserved) actual genotype at the other
marker is white plus black. For this purpose we can assign probabilities to the three
candidate complete genotypes (double white at one marker and double white, white
plus black or double black at the other marker). In a full (maximum likelihood)
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approach the observations on both markers and the trait considered are used for
calculating these probabilities. Then probabilities depend on unknown trait
parameters, but estimation can be done in an iterative manner (see below). It should
be noted that in practice the complete genotype may involve many loci rather than
two.

The key to the estimation problem is to consider an artificial complete set of
data that per individual consists of all pairs of candidate complete genotype and
observed trait value. Calculation of the probabilities associated with candidate
complete genotypes given observed marker and trait data constitutes the
E(xpectation)—step of an EM algorithm. Bayes’ theorem is used to obtain a simple
expression for these probabilities. The M(aximization)-step of the EM algorithm
consists of a weighted linear regression using the artificial complete set of data. The
replicated trait values are regressed on candidate complete genotypes and the
weights involved are the probabilities assigned to the candidate complete genotypes
(Jansen and Stam, 1994). Usually it is assumed that trait values follow a normal
distribution but it is easy to extend the model to accommodate for non—normal
distributions. To keep things simple it is often assumed that gene effects are
additive.

It should be noted that the genotype may not only involve marker loci but also
‘true’ quantitative trait loci (QTLs at hypothetical map positions). The genotypes
of the QTLs are always unknown but again complete data can be constructed. In
fact, the loci in the regression model may be either a set of markers, a single QTL,
multiple QTLs or any combination of markers and QTLs. We often use an approach
in which the trait is regressed on selected markers and a single putative QTL. By
moving the putative QTL along the chromosome, we can produce a profile of QTL
likelihood at any map position (see Box 1 and 2).

For large progenies with very incomplete marker information exact
computations are not feasible due to the extremely large number of candidate
complete genotypes. One solution to this problem is to disregard unlikely genotypes
in the calculations. This approach works well in our first example (Box 1).
However, in our second example (Box 2), the set of candidate genotypes is still too
large. Therefore a Monte Carlo solution rather than an analytic solution for updating
parameter estimates in the M—step of the EM algorithm is used. In each E—step of
the EM algorithm candidate complete genotypes are sampled from the conditional
probabilities calculated in the E-step. Again, an artificial data set can be constructed
involving multiple copies of the data. Now the number of copies is equal to the
number of Monte Carlo runs. Sums of squares and products (SSP) can be
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Box 1:

QTL mapping for germination in
Arabidopsis. (a) Two ecotypes were
crossed. Recombinantinbred lines were
derived by self—pollinating plants for a
number of generations. Each generation
genetic material may be reshuffled by
recombination in regions where the
homologous chromosomes have
different alleles (white and black). When
inbreeding proceeds, homologous
chromosomes tend to become identical
and the chance of recombination
between a target gene (e.g. double white)
and a marker gene (double black) is
R=r/(1+2r). (b) Recombinant inbred
lines (99) were tested under three
different conditions in three replicates
(nine environments). (c) The trait was
regressed on a set of markers (covering
all five chromosomes) and environment
including marker by environment
interactions. By backward elimination
important markers were selected
(indicated by *); markers at chro-
mosome 1 showed no interaction with
environment. Next, the trait was
regressed on all selected markers and a
putative QTL. By moving the QTL along
the chromosome, we produced a profile
of QTL likelihood; a selected marker
was (interactively) dropped from the
model if the putative QTL was nearby
(<15 cM). Bars indicate 95% support
intervals.for the QTL detected.
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Box 2:

QTL mapping for Fusarium resistance in lily. (a) Two cultivars with one common set of
chromosomes were crossed. In the offspring three candidate alleles are present at each locus
(white, black or grey). Unfortunately, the marker technique used provides only partial
information about the actual allelic configuration. Markers at chromosome segment 2 can
only assess the presence or absence of the grey alleles. The type of the other allele (white or
black) cannot be assessed. The white and black alleles may have different effects on the trait.
Two complete allelic configurations are possible for each marker observation. For several
markers, the number of candidate genotypes soon becomes extremely large (also because
some plants have not yet been genotyped in which case we have four candidates per marker).
We used Monte Carlo EM for parameter estimation. (b) The offspring was tested for
Fusarium resistance. To illustrate the traditional analysis of markers—one-by—one, we show
the distribution of individuals with the grey allele present and the distribution of individuals
with this allele absent for marker 5 at segment 2. The difference is significant using Kruskal—
Wallis test. Markers in three segments displayed QTL activity. (c) Results of the traditional
approach are denoted by A. We also implemented the full maximum likelihood approach
(denoted by V). We fitted three QTLs simultaneously, one in each segment. One QTL was
moved along the chromosome, while keeping the two other QTLs at their nearest marker
position obtained in the preliminary analysis.
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accumulated sequentially for each Monte Carlo run in turn. Regression calculations
are based on the final SSP matrix.

Unfortunately, there is no feasible way to generate the Monte Carlo samples,
because it is difficult to update the genotype for all loci simultaneously. In our
second application (Box 2) we use the Gibbs sampler, a simple iterative approach
treating the problem locus by locus. If an individual has incomplete genotypic
information at a certain locus, then a complete genotype at that locus is sampled
from the conditional distribution given the incomplete genotype at that locus, the
current complete genotype at other loci, the trait values and the current parameter
estimates. Expressions for the conditional probabilities can be derived in a
straightforward manner using Bayes’ theorem. These calculations are now much
easier because of the small number of candidate genotypes per step. One cycle of
this Gibbs approach is terminated if genotypes have been updated once for all loci.
Itshould be noted that subsequent cycles produce dependent Monte Carlo realizations
and usually only a subset of the realizations is used.

We finally mention that the use of Monte Carlo techniques in combination
with Gibbs sampling opens up ways for tackling complicated gene mapping
problems, such as arise when data originate from human pedigrees rather than from
controlled experiments in plants or animals (Guo and Thompson, 1992).

4. CONCLUDING REMARKS

Currently, mapping of quantitative trait genes is a very active area of
theoretical research. Many important issues are being investigated, such as optimal
approaches to selection of markers, thresholds for tests of QTL detection, construction
of confidence intervals for QTL location, problems of (over)parameterization and
bias, robustness of the mapping approach and development of diagnostics for
diverse purposes. In this paper we have chosen to describe a general frame for QTL
mapping and to emphasize the relation with standard multiple linear regression
models. We believe that many of the genetic problems may bear upon statistical
problems of multiple linear regression and solutions may or may not yet be
available. Anyhow, challenging problems arise at the interface of statistics and
genetics and statisticians can have a key role in solving them.
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MODELLI BIOMETRICI PER IL MAPPAGGIO DI GENI
PER CARATTERI QUANTITATIVI
TRAMITE MARCATORI MOLECOLARI

RIASSUNTO

Viene proposta una introduzione alle problematiche statistiche connesse all impie-
go, introdotto di recente, dei marcatori molecolari per il mappaggio di geni responsabili
della variabilita di caratteri quantitativi. Si tratta essenzialmente di stima e di inferenza
nell’ambito di modelli genetici complessi che possono introdurre dati genotipici mancanti
od incompleti. Il problema puo essere affrontato considerando tutti i dati genotipici
completi disponibili ed assegnando ad essi dei pesi opportuni. Il carattere di interesse puo
essere quindi analizzato tramite regressione multipla pesata su tutti i dati genotipici,
tramite algoritmo EM (Monte Carlo) per la stima dei parametri.

Parole chiave: mappe genetiche, QTL, regressione multipla, algoritmo E.M.



