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Abstract An approach for evidence evaluation for trace evidence in the form of hi-
erarchical, longitudinal binary data is described. A non-parametric density method
is applied to a measure of distance, treated as continuous, between control and
recovered data. Training data are available of striation marks from a set of screw-
drivers for the estimation of within-source and between-source distances. Correct
directions of support are obtained in over 90% of test comparisons.
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1. INTRODUCTION

An important role of the forensic scientist in the investigation and prosecu-
tion of a crime is the interpretation and evaluation of evidence. Consider
measurements on trace evidence, such as the measurements of the refractive
index of fragments of glass; denote these measurements as F. In a criminal
case, there are two opposing sides, that of the prosecution and that of the
defence. Assume they have propositions related to E; denote these as H,
and Hy. It is then desired to measure the effect of the evidence (E) on
the probability that the prosecution’s proposition (H)) is true against the
probability that the defence’s proposition (Hy) is true, i.e.,

Pr(H, | E) _ Pr(E | Hp) % Pr(Hp)
Pr(Hg| E)  Pr(E|Hg)  Pr(Ha)

(1)

The ratio Pr(E | Hy)/Pr(E | Hg) is the ratio of the probability of the evi-
dence assuming the prosecution’s proposition (Hp) is true to the probability
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of the evidence assuming the defence’s proposition (Hy) is true. This ratio
is known as the likelihood ratio. The ratio

Pr(Hy, | E)/Pr(Hy | E) is the posterior odds in favour of the prosecu-
tion proposition, given the evidence. The ratio Pr(H))/Pr(Hg) is the prior
odds in favour of the prosecution proposition. A value of the likelihood ratio
greater than one is supportive of the prosecution’s proposition, a value less
than one is supportive of the defence proposition since, in the two situa-
tions, the posterior odds in favour of the prosecution’s proposition is greater
or less, respectively, than the prior odds.

When the evidence takes the form of continuous measurements, the
probabilities are replaced by probability density functions. A common ex-
ample of such evidence is the measurement of the refractive index of a
fragment of glass.

Trace evidence, examples of which are body fluids, fragments of glass
and gunshot residue, is often in two parts. One part is evidence whose
source is known, this is control evidence, denoted x. The second part has
an unknown source and is known as recovered evidence, denoted y. For
example, in a crime in which a window has been broken, x would be a
set of measurements of refractive indices of fragments of glass from the
broken window. A suspect is found and they have fragments of broken
glass on their person. The set of measurements of refractive index of these
fragments would be y; the fragments may have come from the crime scene
window but may not have. Denote the joint probability density function of
x,y by f(x,y) and the likelihood ratio is then

f(xay ‘ Hp)
fooy [Hy) @

where H,, is the prosecution’s proposition that the control and recovered
fragments have the same source and Hy is the defence proposition that the
control and recovered fragments have different sources.

Much has been written about the evaluation of the likelihood ratio when
the evidence is in the form of continuous measurements; see, for example,
Aitken and Taroni (2004), Aitken and Lucy (2004). However, there is a
paucity of methods for discrete data. See Aitken and Gold (2013) for a
discussion of two models for the evaluation of evidence in the form of discrete
data, motivated by an example in forensic phonetics, in which the data
are the numbers of occurrences of a particular vocal characteristic in a
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of speech. One model assumes the observations are independent and iden-
tically distributed following a Poisson distribution, while the other model
assumes the adjacent observations are dependent, leading to a bivariate
Bernoulli model.

Another example of the use of discrete data in forensic science, where
the data are hierarchical, longitudinal and binary, is discussed in Petraco
et al. (2012). Classification rates are determined to demonstrate the effec-
tiveness of the procedure for strength of association. These data motivated
the development of another approach for the evaluation of evidence.

2. DATA

The source of the discrete data used in Petraco et al. (2012) is that of
striation marks made by a tool, and the authors describe an experiment to
investigate the evidential possibilities of such marks. An experiment was
conducted in which nine identical screwdrivers were used. The striation
patterns made by each of the nine screwdrivers were recorded. Distances
of each line or groove from the left edge of each striation pattern were
measured to the nearest 0.05 mm. Each striation pattern was no more
than 7 mm wide. For each pattern, a list of 140 pieces of information
(7 mm/0.05 mm slots) is created. Each piece of information is a 1 or 0.
A 1 is recorded in a slot on the list if a line or groove were present or
spans the slot. A 0 is recorded otherwise. The procedure yielded a 140-
dimensional binary feature vector for each pattern. In the 140 components
of the feature vector, 19 always had value 0 across all recorded striation
patterns. Petraco et al. (2012) excluded these non-varying components
from their analyses. They are retained here for completeness. The analysis
described is based on a distance measure between two sets of marks, so
the effect of their retention is zero. Methods described by Petraco et al.
(2012) are based on partial least squares discriminant analysis and principal
component analysis with support vector machines. Classification rates of
correct assignments of marks to the screwdriver that made the mark of 97%
or higher were achieved. Further details are available from Petraco et al.
(2012). However, none of these methods provides a value for evidence in
the form of a likelihood ratio. They show that the detection methods of
associating marks with screwdrivers were good.
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In a particular case, the evidence E would be the striated marks made
by a screwdriver presented in the form of a vector in B0 = {0,1}!40, The
control evidence, x, is the vector of marks for which the source (screwdriver)
is known. This could be a screwdriver found in the possession of a suspect,
for example. The recovered evidence, y, is evidence for which the source is
not known. This could be a set of striation marks found at the scene of a
crime. These marks could have been made by the screwdriver found in the
possession of the suspect; this would be the prosecution’s proposition, H,,.
Alternatively, these marks could have been made by some other screwdriver;
this would be the defence proposition, Hy. The evidence, x,y, is discrete,
so its value can be determined by consideration of

Pr(x,y | Hp)
Prix.y | Ha) @)

However, some method is needed for the estimation of the associated prob-
ability mass function Pr(-,-), over a bivariate B'40 sample space. This is
impractical and a method based on a distance measure d(x,y) is proposed.

The proposed method is developed with the use of a training set that
consists of seventy-five records of striation marks in B4 made by the nine
screwdrivers. The 75 records are divided into nine groups, one for each
screwdriver, indexed by ¢ (¢ = 1,...,9). There are [, replicates for screw-
driver ¢ with 1 = (I1...,l9). The data are 1 = (8,6,9,8,9,9,8,9,9), with

2:1 lq = 75. Therefore each observation in the data set can be represented
as zgr (k=1,...,1;; ¢=1...,9), and zy € B0, The data are hierarchi-
cal, there is variability between striation marks made by the same screw-
driver (known as within-source variation) and variability between striation
marks made by different screwdrivers (known as between-source variation).

If the measurements for each observation were continuous variables,
methods based on multivariate normal distributions or kernel density esti-
mation may be used (Aitken and Lucy, 2004). For binary data, it is hard to
estimate a distribution from the training set that describes the observations
over B0 There are 20 members of the sample space and only 75 mem-
bers of the training set. A procedure based on the differences between sets
of measurements within each group and between each group is described as
an alternative.

Let x and y be two sets of binary measurements in B'°. The distance
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Histogram of within-group distances

A0
!

&0
1

Al

Fregusncy

40

20

——————————

J

o
57
&
v
FEY
o
¢
o
i

within-group distances

Figure 1: Histogram of within-group distances.

d(x,y) between them is defined as

140

dix,y) = (x—y) (x=y) =Y (zi — )% {zoy} {01} (@)

i=1
For group ¢ (¢ =1,...,9), determine
d(qul,quQ) for kl = 1,... ,lq — 1; kz = kl + 1,... ,lq, (5)

so there are 1 22:1 l4(ly — 1) = 279 within-group distances.
Similarly, the distance between the pairs of observations from different

groups is given by

d(ZQ1k17ZQ2k2) (6)

forqr=1,....8 a=aq1+1,....,9k =1,...lg; ka=1,...,14.
There are %221:1 222:q1+1 lglg, = 2496 between-group distances.

Histograms of within- and between-group distances are shown in Fig-
ures 1 and 2. Most of the within-group distances are below 40 whereas the
between-group distances cluster in the interval 30 to 70.
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Histogram of between-group distances
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Figure 2: Histogram of beetween-group distances.

3.ESTIMATIONOFTHELIKELIHOODRATIOBASED ONDISTANCES

A likelihood ratio for the evaluation of the evidence of the striation marks
based on the distances is described. The evidence E is two sets of mea-
surements (x,y) of striation marks from B'°, These two sets are then
summarised as d(x,y). The propositions are H,, the two sets of measure-
ments came from the same source (screwdriver in this context), and Hy, the
two sets of measurements came from different sources. The likelihood ratio

F(dx,y) | Hy) .
fldx,y) | Ha)’
where f in the numerator is a probability density function modelling within-
group distances and f in the denominator is a probability density function
modelling between-group distances. Thus, the problem of the evaluation
of evidence for discrete data has been transformed into one for continuous
data, treating the 141 possible distances 0, . .., 140, as a continuous variable.

is then

These two probability density functions are estimated using the kernel
method of density estimation. This method is a distribution-free method
for the estimation of a probability density function. See Silverman (1986)
for a general description of the kernel density estimation procedure and
Aitken and Taroni (2004) for examples of its application in the evaluation
of evidence for continuous data. The kernel density estimates are developed
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from two training sets, the within-group set with 279 distances for the
within-group density and between-group set with 2496 distances for the
between-group density.

In general, let D be a training set z = (21, ..., 2,) of size n of univariate
data from which it is desired to estimate a probability density function f.
Then the kernel density estimate f of f at a point w is given by

Flush. D) = - 30w (M), Q

=1

where K is a function, known as a kernel function, satisfying K(u) > 0
and [ K(u)du = 1. The parameter h (> 0) is a smoothing parameter (also
known as bandwidth). The larger h is, the smoother the estimate is. Define
K (u) = K(u/h). Then the estimate may be written as

R 1 &
ch,D) = — K, — Zi).
FtwshoD) = 2 3 K = )
The kernel function chosen here is the standard normal distribution
1 u?
Ku) = —e < - —) 10
(u) oz P 5 (10)

and the smoothing parameter is determined in an optimal manner using the
R package ‘KernSmooth’.

Let x and y be two sets of striation marks with distance d(x,y). The
kernel density estimation procedure is used to estimate the probability den-
sity function of the distances d(x,y) between sets x and y. The likelihood
ratio for d(x,y) is the ratio of the estimates of the probability density func-
tions, first, for the numerator based on the training set of within-group
distances, and second, for the denominator based on the training group of
between-group distances.

3.1 ESTIMATION DENSITY OF WITHIN-GROUP DISTANCES

Let A, be the optimal bandwidth based on within-group distances. The
associated density function is used for estimation of the density function
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Figure 3: Histogram and kernel density estimate of distribution of within-group distances.

in the numerator. It is estimated using the training set D,, of within-
group distances. This set consists of 279 within-group distances z,, =

(Zwls - -+, 2w279). The kernel density estimate f. for d(x,y) is then
279
2 1 d(x,y) — Zwi
A(X,¥): hu, D) = ———— K(i) 11

The kernel density estimate, superimposed on the histogram of within-group
distances, is shown in Figure 3.

3.2 ESTIMATION DENSITY OF BETWEEN-GROUP DISTANCES

Let hy be the optimal bandwidth based on between-group distances. The
associated density function is used for estimation of the density function in
the denominator. It is estimated using the training set Dy of 2496 between-
group distances zp = (2p1, ..., 2p2496). Lhe kernel density estimate fb for
d(x,y) is then

) | 2496 d(x,y) — 2
he Dy = K(—=2L =) 12
PGy b, Do) = g 30 K (TR =) (12)

The kernel density estimate, superimposed on the histogram of within-group
distances, is shown in Figure 4.
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Histogram of between-group distances
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Figure 4: Histogram and kernel density estimate of distribution of between-group
distances.

3.3 LIKELIHOOD RATIO AND RESULTS

The likelihood ratio is the ratio of the within-group density estimate and
the between-group density estimate:

fuldix,y)shy) _ 7 i K (R2) (13)

Fodoey)ihe) b Y K(d("%) sz)

b

As an example of the approach in practice, the distance between the first
two sets of striation marks in the first group, items 1 and 2 in the training
set of 75 items, is 11 and the likelihood ratio is 2 x 10'°.

The likelihood ratios of all possible pairwise comparisons of within-
group and between-group marks were calculated. The results are presented
in Table 1 in a tabular form for numbers of likelihood ratios, expressed as
logarithms to base 10, within certain intervals. Logarithms of likelihood ra-
tios less than 0 are supportive of the proposition of different sources (screw-
driver) and logarithms of likelihood ratios greater than 0 are supportive of
the proposition of same sources (screwdriver).

For the pairs of marks that come from the same group, more than
90% (253/279) of them result in likelihood ratios greater than 1 indicating,
correctly, support for the proposition of the suspect screwdriver making
the crime mark. For the pairs of marks that come from different groups,
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Table 1: Likelihood ratios, expressed as logarithms to base 10, within certain intervals for
279 within-sour ce comparisons and 2496 between-sour ce comparisons.

Interval (-11,-9] (-9,-7 (=7,-5] (=5,-3] (-3,-2] (-2,-1]
Within-group comparison 0 0 0 0 0 9
Between-group comparison 2 22 70 85 54 1639
Interval (—1,0] (0,5] (5,10] (10, 20] (20, 30] (30,40]
Within-group comparison 17 113 47 81 11 1
Between-group comparison 503 121 0 0 0 0

more than 95% (2375/2496) of them result in likelihood ratios less than 1
indicating correctly, support for the proposition that the suspect screwdriver
did not make the crime mark.

4. CONCLUSIONS

An approach for evidence evaluation for trace evidence in the form of hier-
archical, longitudinal binary data has been described. An example of its use
is given for the evaluation of evidence in the form of tool marks as measured
by striation marks made by a tool. In the example described the tool is a
screwdriver. An assessment of the performance of the method has shown
that the support for a particular proposition as measured by a likelihood
ratio is in the correct direction more than 90%; i.e, the likelihood ratio
for support for the same source when the marks are from the same source
is greater than 1 and the likelihood ratio for support for different sources
when the marks are from different sources is less than 1 in more than 90% of
the comparisons made. The method described is easily adaptable to other
examples of hierarchical, longitudinal binary data. Another example is in
forensic phonetics where the binary data would be the presence or absence
of a speech characteristic with the records being several pieces of speech by
each of several individuals in a sample from some population of interest.
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