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Abstract Two early contributions by C. Gini, containing intuitions of some inter-
est to modern readers, are reviewed. In an attempt to investigate relevant features
in the distribution of sexes in human births, Gini formulated and tried to test infor-
mally several models which can he conceived as possible alternatives to the binomial
distribution, leading to over or under dispersion. One of these models allows for
serial correlation within births from the same couple and, in an attempt to provide
a testing procedure of this alternative hypothesis, Gini exploits an intuitive notion
of finite exchangeability. Informal testing is usually based on comparing expected
and observed frequencies. Two interesting applications based on data from Saxony
and the town of Dresden in 18th century births will be described in some detail.

Keywords: sex ratio, binomial distribution, over-dispersion, finite exchangeabil-

ity.

1. INTRODUCTION

The book by Gini (1908), an extended version of his dissertation at the

University of Bologna, contains the results of a massive investigation about

the distribution of sexes in human births based on data from different

countries and historical periods. The present paper concentrates on certain

crucial portions of Chapters V where he discusses a collection of models

for binary data which differ in various ways from the binomial distribution.

Some applications of these results to several data sets on human births

contained in Chapter X will also be outlined.

Gini (1911) is a paper which appeared in a collection of studies pub-

lished at the University of Cagliari where he held a position between 1909
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and 1913; the paper was later reprinted in Metron. It deals with the com-

putation of what, in modern terminology, would be called predictive proba-

bility: the probability that the next child is a male, knowing that the same

couple had already x males out of n births. This paper contains two main

results: an expression for computing the predictive probability based on an

assumption which is, essentially, equivalent to finite exchangeability and

an informal test of that same assumption. Gini (1911) contains also some

sharp criticism of the assumption of uniform prior probabilities which, ap-

parently, was commonly used at the time for computations based on Bayes’

theorem.

The present work is an attempt to present a selected set of results from

these early contributions by translating Gini’s terminology and line of argu-

ment into modern language. In particular, the collection of models which he

proposed as alternatives to the binomial distribution, here are rephrased

into alternatives to the multinomial distribution, without changing their

original structure. Though, clearly, he did not have such extensions in

mind, they are quite straightforward, in addition, this approach makes the

presentation simpler.

While certain passages of these early works are easy to follow, others

may appear a little obscure to a modern reader, both in the terminology

and the conceptual framework current at his time but rather obsolete after

over one century. Passages where conclusions may depend on subjective

interpretations are discussed in some detail.

2.  THE 1908 BOOK

This is a book of about 500 pages which begins with a detailed list of the

sources of the examined data, followed by 14 pages of references. Chapter

IV presents and discusses the main results of the Theory of dispersion,

the name used at the beginning of last century to indicate the procedures

developed by Lexis, Dormoy and others to test whether certain collections

of binary data conformed to the binomial distribution, an issue which had

important implications, (see Stigler, 1986, Chapter 6).

Section 1 of Chapter V of Gini’s book contains a discussion of possible

applications of the binomial model to the distribution of sexes in human

births. He seems to say that, if we assumed that the probability of a

male birth was constant and events were independent, then we could derive
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several results like, for instance, assess whether the proportion of males in a

given town for a given year was or not too unusual for being due to random

variation. In this respect he says, p. 20, “We must decide how small must

be the probability of an event for us to say that it is unlikely to happen”

and admits that the problem cannot have an objective solution but suggests

that events having probability less than 1/20 may be considered as rather

unusual. He also mentions that similar tools could be used to detect errors

in the data, a kind of outlier detection.

The tools Gini mentions in Section 1 are often based on the normal

approximation to the binomial distribution, when the number of observa-

tions in his applications to sex in human births are sufficiently large. For

instance, on page 140 he recalls the expressions for computing the standard

error of a proportion or the difference between two proportions. From the

review material in Chapter IV it is quite clear that “normal dispersion”, a

term used often in the book, means a shape of the distribution compatible

with what would be expected under the assumption of constant probability

of success and independence. This is checked both by comparing observed

and expected summary measures of variability as well as by what he calls

“enumeration”, that is the expected and observed frequencies of certain

deviations from the mean. In the analyses that he presents in Chapter X,

when studying the distribution of males within families with n births, to

determine whether a given distribution was more or less “than normal”, a

terminology probably borrowed from the work of Lexis (see Stigler, 1986,

Chapter 6), Gini compares observed and expected (under the binomial

model) frequencies near the mean and on the tails of the distribution.

2.1   A COLLECTION OF ALTERNATIVES TO THE BINOMIAL MODEL

Section 2 in Chapter V begins with a challenging question which may be

translated as follows: suppose that a given collection of observations con-

cerning the proportion of male births in different families (or different years

or regions) have distributional features compatible with those of the bino-

mial model, can we infer that the probability of a male birth is constant

and events are independent ? According to Gini, Lexis, Poisson and von

Bortkiewiscz had already explained that, if both the number of births and

the probability of a male birth within each separate data set varied at ran-

dom, see model Ac) below, the overall distribution, obtained by merging

the data, would still be compatible with the binomial model. In other
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words, when the binomial model is violated in different directions, the con-

sequences on the dispersion of the overall distribution may cancel (p. 151).

At this point he asserts that there are several other violations of the bi-

nomial model and describes (pp 152-156) six different alternatives to the

binomial model.

Each of these models is first outlined in words and then by describing

how the corresponding data could be generated at random by drawing

balls from certain collections of urns; these urn models, though expressed

in words, are very accurate and leave no ambiguity. After describing each

model, Gini adds a short statement specifying whether the “dispersion” to

be expected in the data generated by that model is “normal”, “more than

normal” or “less than normal”. Though each of Gini’s statement is indeed

correct, as shown below, he does not provide any proof nor references. Thus,

it is not clear whether he reached his conclusions by actually drawing balls

from his boxes, or simply by intuition.

Below, when presenting each of the six alternative models, the binomial

distribution is replaced with the multinomial and stated formally in modern

language; in addition, an expression for the covariance matrix is derived and

then compared with the covariance matrix of the multinomial distribution.

Models are identified with the same headings as in the book; all of his urns

contain balls of two different colours and in each case he specifies clearly

that drawings are with replacement. In model Aa) over-dispersion is due to

variations in the underlying probability; for instance, if the probability of

having a male birth varies from couple to couple, the distribution of sexes

in, say, families with 5 births should exhibit over-dispersion compared to the

binomial model. Models Ab), Ac) and Ad) are about mixtures of binomial

distributions and could be applied, for instance, to the distribution of the

total number of male births in different communities, by aggregating data

from different populations. Model Be) is about serial correlation and could

be applied when studying the distribution of males births in a given town or

region for a collection of years. Finally, models Bf) and Bg) are about serial

correlation between observations within a given distribution and could be

applied to investigate whether the sex of a new baby is affected by the sex

of babies in previous births in the same family, an issue investigated in

detail in Gini (1911).

Recall that if x is a vector of frequencies having a multinomial distribu-

tion (n,p), where n is the total number of observations and p is the vector of
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probabilities, then the covariance matrix Var(x) is equal to n[diag(p)−pp′];
in the following Ω(p) will be used as a shorthand for diag(p)− pp′.

Aa “We perform several sets of 100 draws ... for each set we take an

urn with a different proportion between the number of balls of the

two colours”; in this model he states that “dispersion is more than

normal”. Let p denote the vector whose elements are the proportion

of balls of different colours in a given urn; then the above model

may be translated by first assuming that x, the vector containing

the number of balls of different colours obtained by drawing n balls

with replacement, has a multinomial distribution (n,p). Because the

composition of the urn is not constant, p is itself a random variable;

assume, without loss of generality, that E(p) = π and Var(p) = Σ.

Because of the assumed multinomial, Var(x | p) = nΩ(p); by using

standard results for computing the marginal variance, it follows that

Var(x) = nΩ(π) + (n− 1)Σ,

in words, as long as each sample contains more than one observation,

the multinomial variance increases in a way that depends on how

much the proportions p vary from one sample to the other; this is a

general model of over-dispersion.

Ab “We have 10 urns with a different proportion between the balls of the

two colours; we draw several samples of 100 balls obtained by taking

10 balls from each urn”; the dispersion in this model will be “less

than normal”. The model may be translated by assuming that the

vector of observed frequencies may be written as y =
∑

xi, where

xi is the frequency vector for the balls drawn from a single urn and

has a multinomial distribution (ni,pi); let n =
∑

ni, ri = ni/n and

π =
∑

ripi. Then, Var(y) =
∑
Var(xi) = n[

∑
ridiag(pi)−

∑
ripip

′
i].

Let Σ =
∑

ri(pi−π)(pi−π)′, then, by simple calculations, it follows
that Var(y) = n[Ω(π)−Σ]. This result indicates that mixing different

multinomial distributions causes under-dispersion.

Ac “We have 10 numbered urns ... each urn contains balls of the two

colours in a different proportion ... the number of balls we draw from

each urn is not constant ... it is determined beforehand ... as follows:

take an other urn containing 10 balls marked with digits from 1 to
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10; from this urn we make 100 draws ... the number of balls drawn

with the digit 1 indicates the number of draws to be made from urn 1

...”. According to Gini, the dispersion here is “normal”. This model

may be translated by assuming, as above, that y =
∑

xi with xi

multinomial (ni,pi), however, because the number of draws from each

urn is not constant, let n be the vector with elements ni and assume,

in addition, that n follows, in turn, a multinomial (n, τ ), where the

elements of τ determine the probability of using each different urn;

in Gini’s example the different urns has the same probability of being

selected. Let also P denote the matrix whose ith column is equal to

pi then π = Pτ . Notice that E(y | n,P ) = Pn and also that E(y)

= nPτ = nπ. Then, by using the results for the previous model, the

conditional variance may be written as

Var(y | n,P ) = diag(Pn)− Pdiag(n)P ′,

because Var(Pn) = n[Pdiag(τ )P ′ −ππ′], the marginal variance be-
comes

Var(y | P ) = n[diag(π)−Pdiag(τ )P ′+Pdiag(τ )P ′−ππ′] = nΩ(π).

In this model the under-dispersion due to mixing is exactly balanced

by over-dispersion caused by randomness of the sample sizes in the

components of the mixture.

Ad The description of this model is rather similar to the one above, except

that 20 rather than 100 balls are drawn from the auxiliary urn and the

number of draws from urn 1 equals the number of balls marked with

1 multiplied by 5. Dispersion here is “more than normal”. Let mi

denote the number of balls drawn with the digit i, then the number

ni of balls to be drawn from the ith urn will be five time bigger, that

is ni = 5mi so that overall each sample will again be composed of 100

balls. Suppose, in general, that ni = kmi, then Var(n) = k2Var(m)

= k2(n/k)Ω(τ ); in words, the variance of the component sample sizes

is inflated and thus exceeds the under-dispersion produced by mixing.

Be “Suppose we make several draws of 100 balls ... After each set of

100 draws, the proportion of the balls inside the urn is changed by

increasing, in a certain proportion, the balls of the colour which in
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the last draw came out with a lower frequency ... or, on the contrary,

the balls of the colour which came out with the higher frequency”.

Dispersion here is “more than normal” irrespective of the sign of

the correlation. This model could be translated by assuming the yt,

the vector of frequencies at time t, has a multinomial distribution

(n,pt), where pt denotes the actual proportions of balls in the urn

at time t and suppose that pt = π + α(yt−1/n − π); in words, if

α < 0, we increase the proportion of balls for the colours that came

out less frequently than expected (in the long run) and decrease the

proportion for the other colours. If α > 0, changes are in the opposite

direction. Recalling that E(pt) = π, E(ptp
′
t) = ππ′ + Var(pt), the

marginal variance may be computed as follows

Var(yt) = n[E(Ω(pt))+
(α
n

)2
Var(yt−1)] = n[Ω(π)+α2n− 1

n
Var(yt−1)].

It follows that the variance of yt is greater than that under multi-

nomial sampling, irrespective of the sign of α, that is for positive or

negative autocorrelation.

Bf, Bg In these two models, he assumes that each sample of n observations

is taken sequentially and that, after drawing each ball, the propor-

tions of balls in the urn are changed to induce positive or negative

serial correlation within each sample. Here, according to Gini, dis-

persion is “more than normal” when correlation is positive and “less

than normal” when correlation is negative. Here it is convenient to

generalize, slightly, Gini’s settings concerning the specific mechanism

for inducing positive correlation. Let π be the vector containing the

proportions of balls of different colours at the beginning and xt be

the result of the tth draw; this is a vector of 0’s except for a 1 in the

position corresponding to the colour of the ball drawn at time t. As-

sume that xt has a multinomial distribution with total 1 and vector

of probabilities pt = π+α(xt−1 −π), with | α |< 1 and x0 = π. Let

y =
∑

xt; it can be easily shown by recursion that E(xt) = π, so

that E(y) = nπ. Again by a recursive argument it can be shown that

Cov(xt,xt−k) = αkΩ(π). Then, by using the standard expression for
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computing the variance of a sum of correlated variables, we obtain

Var(y) =
n∑
1

Var(xt) +
n∑
2

Cov(xt,xt−1) +
t∑
3

Cov(xt,xt−2) + · · ·

= nΩ(π) + α(n− 1)Ω(π) + α2(n− 2)Ω(π)... . . .

The result follows because the second term has the sign of α, the

third term is smaller than the second in absolute value and each new

term is smaller than the previous one in absolute value.

In the discussion that follows the presentation of the above models, Gini

calls features of convergence those which produce lower dispersion and fea-

tures of divergence those who produce increased dispersion and notes that,

if a given data set has normal dispersion but we have detected that certain

features of divergence are operating, then there should also be features of

convergence operating in the opposite direction, and a careful investigation

should reveal them.

2.2  TESTING  FOR SERIAL CORRELATION

Three different ways of testing against model Model Be) are presented in

Gini (1908), pages 159-165; they are based on data from the town of Berlin.

By breaking the 6 years from 1899 to 1904 into intervals of 10 days each,

he obtains a time series of 219 observations made of the proportions, say

Yt, of male births out of 100 female births. The main objective was to

show the lack of negative autocorrelation that Gini calls “compensatory

tendency”, this feature, if present, could have been interpreted as evidence

that “nature” was operating for correcting her own mistakes to prevent the

sex ratio to become unbalanced, as suggested by Arbuthnot (1712)(Gini,

1908, pag. 87).

Two summary measures of serial dependence are computed: the cor-

relation coefficient between Yt−1 and Yt and a measure which Gini calls

the “correlation index”, apparently of his own invention. This index is

computed by counting the proportion of times that Yt−1 and Yt are both

smaller or greater than the overall average divided by the total number of

218 pairs.

After grouping observations into 5 adjacent categories, say C1, . . . C5,

as in the first column of his Table XXXV, he also computes the conditional
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Figure 1: Reproduction from Gini (1908): for the number Y
t-1 

of female births for every 100
males during each period of 10 days intervals from 1899 to 1904 in the town of
Berlin, the table gives the average of Y

t 
(column 2) when Y

t-1 
belongs to a given

category as specified in column 1.
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Figure 2: Reproduction from Gini (1908) concerning the town of Dresden: for the families
with n births, 2≤n ≤ 6, and a given composition in males and females, P

1 
is the

expected frequency under the binomial model and P
2 
is the observed proportion.
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Figure 3: Reproduction from Gini (1908): for families that, at some point, had a number of
children between 2 and 6, the lines connect the values of the ratio between observed

proportions and binomial probabilities on the Y axis depending on number of
females on the X axis; data from Dresden.

theorem, may be translated as follows:

P (Sm = y | Sn = x) =
P (p = θ)P (Sm = y | p = θ)P (Sn = x | p = θ)∑
θ P (p = θ)P (Sm = y | p = θ)P (Sn = x | p = θ)

.

He explains why, in his opinion, this formula is useless in practical appli-

cations: for each possible value taken by θ we should know (or be able to

assign values to) the prior probability P (p = θ) that this happens; an al-

most impossible task from a non subjectivist point of view. He recalls that,

to overcome the problem, it is usual to assume that θ can take any possible
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P (Sn = x) =

m∑
y=0

P (Sn = x, Sm = y) =

m∑
y=0

P (Sn+m = x+y)P (Sm = y | Sn+m = x+y),

to obtain his basic equation

P (Sm = y | Sn = x) =
P (Sn+m = x+ y)P (Sm = y | Sn+m = x+ y)∑m
y=0 P (Sn+m = x+ y)P (Sm = y | Sn+m = x+ y)

.

(1)

3.1  TESTING FINITE  EXCHANGEABILITY

To understand the importance of equation (1), it is useful to consider the

application that Gini had in mind: to compute the probability that a couple

with x males in the first n births had a male in the next birth. Because he

expected to be able to estimate the P (Sn+m = x+y)s from recoded data on

families with a given number of births in a given region and a given period,

he remained with the problem of estimating the conditional probabilities
P (Sm = y | Sn+m = x + y). The solution that he devised constitutes,

probably, the most intriguing and innovative contribution of his paper.

Essentially, he states that, under the assumption that things remain

unchanged during the n + m trials, P (Sm = y | Sn+m = x + y) equals

the probability that, if one draws without replacement m balls from an

urn containing x+ y white balls and n+m− x− y black balls, y of these

will be white, that is the formula for the hypergeometric distribution. It

is well known that the above result is implied by the assumption of finite

exchangeability within the n + m events; on this basis, Forcina, in the

discussion of Draper et al. (1993), suggests that Gini’s argument may be

seen as an anticipation of the assumption of exchangeability.

The phrasing of Gini’s paper may appear a little obscure and in 18th

century style compared with De Finetti (1937). The note at the bottom

of page 82 may give the impression that Gini, to derive the hypergeomet-

ric formula, is using the assumption of a binomial distribution. However,

looking at his equation (XIII) on page 87, it seems that he is considering

y

value between 0 and 1 with the same probability, that is P (p = θ) is con-

stant, an assumption which, later in his paper, he shows to be restrictive

and unjustified most of the times.

In an attempt to find an alternative route which does not require as-

sumptions on the prior probabilities, by simple manipulations, he writes
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the binomial distribution conditionally on a given realisation of the prior

distribution. Both his equation (XIII) and the derivation on top of page

89, seem to imply some intuitive form of De Finetti’s representation theo-

rem. Further evidence in this direction is provided by his discussion of the

possible values of the prior probability of an event when, on top of page

79, he says that the case when this probability has a well defined value

corresponds to the very special case where the distribution assigning prior

probabilities to the range of possible values is degenerate.

It is quite clear (see Sec. 7 on page 85) that, in Gini’s opinion, finite

exchangeability was not something to be taken for granted: “We can ex-

pect that these probabilities”, that is those computed by assuming finite

exchangeability, “should not differ in a systematic way from the observed

frequencies, if the assumption we started from is correct”. In particular,

on the basis of the large data sets available for certain cities and regions in

Germany, he could compute, from observed frequencies, among the families

with x males in the first n births, the proportion of those with a males in

the next birth. Again, on page 85 he clarifies that “the comparison between

observed frequencies and theoretical probabilities gives us a way to verify

whether the probability of the event A remains constant during the n+m

observations”. The issue here is whether the probability of having a male

birth by a given couple does or not depend on the sex of previous births.

exchangeability is always greater than the observed proportions. In addi-

tion, the inequality is reversed among families with an excess of females in

the initial n births, that is discrepancies are clearly not at random but seem
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Figure 4: Reproduction of Table II from Gini (1911): predictive probabilities that the new
child will be a male estimated under the assumption of finite exchangeability, that is

according to theory and from raw frequencies, that is de facto.

to follow a well defined pattern. These results are interpreted by Gini as

evidence that there should be some kind of natural balancing mechanism

in the sense that couples with an initial excess of boys were more likely to

have a girl as the next child and viceversa for couples with an excess of

girls.

To strengthen his conclusions, Tables VII and VIII concentrate on cer-

tain comparisons between expected probabilities and observed proportions.

For instance, within families where the number of males is twice the num-

ber of girls, the difference between observed and expected is negative and

increases in absolute value with n. This is interpreted as follows: not only,

due to serial correlation, the probability of another male in families with

more males in previous births is smaller than expected under finite ex-

changeability, but we need bigger families for the discrepancy to emerge

more clearly.
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It is interesting to compare these results with those in Chapter X in

Gini (1908) where, essentially, the same data were used, though they are

arranged in a different way. Gini (1908) studies the frequency distribution

of sexes among the families who, having had a child in a given period, had a

total of v males within a total of n births. Having detected over-dispersion

within most of his distributions, he concluded that model Aa) must be

operating, that is the overall probability of a male birth differs from one

couple to the other. Both the model and the testing procedure in Chapter

X ignore  the order with which males and females were born within each

couple. Gini (1911) instead is about testing models Bf) and Bg), that is

serial correlation within each family.

3.2 EXTENSIONS

In order to allow a wider set of comparisons between theoretical proba-

bilities computed under the assumption of finite exchangeability and the

corresponding observed proportions, Gini (1911) devised an additional ex-

pansion as follows

P (Sn = x, Sm = y) =

t∑
z=0

P (Sn = x, Sm+t = y + z)

=

t∑
z=0

P (Sn+m+t = x+ y + z, Sm+t = y + z)

=

t∑
z=0

P (Sn+m+t = x+ y + z)P (Sm+t =

= y + z | Sn+m+t = x+ y + z).

This expression may be computed for different values of t additional

births for which data may be available. In this way, for instance, Gini

could compute several versions of the predictive probability that a family

with two males in the first two births had another male in the third birth,

by using observed proportions for families with at least 3 children; clearly,

applications of this procedure may be limited because the number of large

families is not large enough to provide reliable estimates of P (Sn+m+t =

x+ y + z).
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3.3  ON THE ASSUMPTION OF UNIFORM PRIOR DISTRIBUTION

Gini (1911) contains also a critical assessment of the assumption of uniform

priors in the context of binary data. First he shows that the expression for

P (Sm = y | Sn = x) obtained under the assumption of uniform priors coin-

cides with the expression derived under the assumption that the marginal

probabilities P (Sn+m = x+ y) are constant for y ∈ [0,m]. In other words,
the same result is implied by two completely different assumptions, a matter

worth of further investigation.

First, on page 87, Gini shows, by a counter example, that his assump-

tion that P (Sn+m = x + y) does not depend on y, does not imply the

assumption of uniform prior distribution. On the other hand, in the spe-

cial case of m = 1, the case of more interest in his applications, he shows

that, under the assumption of uniform priors, we must have

P (Sn+1 = 0) = P (Sn+1 = 1), (2)

see page 88. From these results he concludes that assumption (2) is weaker

than the assumption of uniform priors, though they both imply an identical

expression for the predictive probability.

I would like to thank S. Stigler, University of Chicago, for insightful com-

ments
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